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Abstract. We propose a novel Connectionist Text Proposal Network
(CTPN) that accurately localizes text lines in natural image. The CTP-
N detects a text line in a sequence of fine-scale text proposals directly
in convolutional feature maps. We develop a vertical anchor mechanism
that jointly predicts location and text/non-text score of each fixed-width
proposal, considerably improving localization accuracy. The sequential
proposals are naturally connected by a recurrent neural network, which
is seamlessly incorporated into the convolutional network, resulting in
an end-to-end trainable model. This allows the CTPN to explore rich
context information of image, making it powerful to detect extremely
ambiguous text. The CTPN works reliably on multi-scale and multi-
language text without further post-processing, departing from previous
bottom-up methods requiring multi-step post filtering. It achieves 0.88
and 0.61 F-measure on the ICDAR 2013 and 2015 benchmarks, surpass-
ing recent results [8, 35] by a large margin. The CTPN is computationally
efficient with 0.14s/image, by using the very deep VGG16 model [27].
Online demo is available at: http://textdet.com/.

Keywords: Scene text detection, convolutional network, recurrent neu-
ral network, anchor mechanism

1 Introduction

Reading text in natural image has recently attracted increasing attention in com-
puter vision [8, 14, 15, 10, 35, 11, 9, 1, 28, 32]. This is due to its numerous practical
applications such as image OCR, multi-language translation, image retrieval, etc.
It includes two sub tasks: text detection and recognition. This work focus on the
detection task [14, 1, 28, 32], which is more challenging than recognition task car-
ried out on a well-cropped word image [15, 9]. Large variance of text patterns and
highly cluttered background pose main challenge of accurate text localization.

Current approaches for text detection mostly employ a bottom-up pipeline
[28, 1, 14, 32, 33]. They commonly start from low-level character or stroke detec-
tion, which is typically followed by a number of subsequent steps: non-text com-
ponent filtering, text line construction and text line verification. These multi-step
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Fig. 1: (a) Architecture of the Connectionist Text Proposal Network (CTPN). We
densely slide a 3×3 spatial window through the last convolutional maps (conv5 )
of the VGG16 model [27]. The sequential windows in each row are recurrently
connected by a Bi-directional LSTM (BLSTM) [7], where the convolutional fea-
ture (3×3×C) of each window is used as input of the 256D BLSTM (including
two 128D LSTMs). The RNN layer is connected to a 512D fully-connected layer,
followed by the output layer, which jointly predicts text/non-text scores, y-axis
coordinates and side-refinement offsets of k anchors. (b) The CTPN outputs
sequential fixed-width fine-scale text proposals. Color of each box indicates the
text/non-text score. Only the boxes with positive scores are presented.

bottom-up approaches are generally complicated with less robustness and relia-
bility. Their performance heavily rely on the results of character detection, and
connected-components methods or sliding-window methods have been proposed.
These methods commonly explore low-level features (e.g., based on SWT [3, 13],
MSER [14, 33, 23], or HoG [28]) to distinguish text candidates from background.
However, they are not robust by identifying individual strokes or characters sep-
arately, without context information. For example, it is more confident for people
to identify a sequence of characters than an individual one, especially when a
character is extremely ambiguous. These limitations often result in a large num-
ber of non-text components in character detection, causing main difficulties for
handling them in following steps. Furthermore, these false detections are eas-
ily accumulated sequentially in bottom-up pipeline, as pointed out in [28]. To
address these problems, we exploit strong deep features for detecting text infor-
mation directly in convolutional maps. We develop text anchor mechanism that
accurately predicts text locations in fine scale. Then, an in-network recurrent
architecture is proposed to connect these fine-scale text proposals in sequences,
allowing them to encode rich context information.

Deep Convolutional Neural Networks (CNN) have recently advanced general
object detection substantially [25, 5, 6]. The state-of-the-art method is Faster
Region-CNN (R-CNN) system [25] where a Region Proposal Network (RPN) is
proposed to generate high-quality class-agnostic object proposals directly from
convolutional feature maps. Then the RPN proposals are fed into a Fast R-CNN
[5] model for further classification and refinement, leading to the state-of-the-art
performance on generic object detection. However, it is difficult to apply these
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general object detection systems directly to scene text detection, which generally
requires a higher localization accuracy. In generic object detection, each object
has a well-defined closed boundary [2], while such a well-defined boundary may
not exist in text, since a text line or word is composed of a number of separate
characters or strokes. For object detection, a typical correct detection is defined
loosely, e.g., by an overlap of > 0.5 between the detected bounding box and its
ground truth (e.g., the PASCAL standard [4]), since people can recognize an
object easily from major part of it. By contrast, reading text comprehensively is
a fine-grained recognition task which requires a correct detection that covers a
full region of a text line or word. Therefore, text detection generally requires a
more accurate localization, leading to a different evaluation standard, e.g., the
Wolf’s standard [30] which is commonly employed by text benchmarks [19, 21].

In this work, we fill this gap by extending the RPN architecture [25] to
accurate text line localization. We present several technical developments that
tailor generic object detection model elegantly towards our problem. We strive
for a further step by proposing an in-network recurrent mechanism that allows
our model to detect text sequence directly in the convolutional maps, avoiding
further post-processing by an additional costly CNN detection model.

1.1 Contributions

We propose a novel Connectionist Text Proposal Network (CTPN) that directly
localizes text sequences in convolutional layers. This overcomes a number of
main limitations raised by previous bottom-up approaches building on character
detection. We leverage the advantages of strong deep convolutional features and
sharing computation mechanism, and propose the CTPN architecture which is
described in Fig. 1. It makes the following major contributions:

First, we cast the problem of text detection into localizing a sequence of fine-
scale text proposals. We develop an anchor regression mechanism that jointly
predicts vertical location and text/non-text score of each text proposal, resulting
in an excellent localization accuracy. This departs from the RPN prediction of
a whole object, which is difficult to provide a satisfied localization accuracy.

Second, we propose an in-network recurrence mechanism that elegantly con-
nects sequential text proposals in the convolutional feature maps. This connec-
tion allows our detector to explore meaningful context information of text line,
making it powerful to detect extremely challenging text reliably.

Third, both methods are integrated seamlessly to meet the nature of text
sequence, resulting in a unified end-to-end trainable model. Our method is able
to handle multi-scale and multi-lingual text in a single process, avoiding further
post filtering or refinement.

Fourth, our method achieves new state-of-the-art results on a number of
benchmarks, significantly improving recent results (e.g., 0.88 F-measure over 0.83
in [8] on the ICDAR 2013, and 0.61 F-measure over 0.54 in [35] on the ICDAR
2015). Furthermore, it is computationally efficient, resulting in a 0.14s/image
running time (on the ICDAR 2013) by using the very deep VGG16 model [27].
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2 Related Work

Text detection. Past works in scene text detection have been dominated by
bottom-up approaches which are generally built on stroke or character detec-
tion. They can be roughly grouped into two categories, connected-components
(CCs) based approaches and sliding-window based methods. The CCs based ap-
proaches discriminate text and non-text pixels by using a fast filter, and then
text pixels are greedily grouped into stroke or character candidates, by using
low-level properties, e.g., intensity, color, gradient, etc. [33, 14, 32, 13, 3]. The
sliding-window based methods detect character candidates by densely moving a
multi-scale window through an image. The character or non-character window
is discriminated by a pre-trained classifier, by using manually-designed features
[28, 29], or recent CNN features [16]. However, both groups of methods commonly
suffer from poor performance of character detection, causing accumulated errors
in following component filtering and text line construction steps. Furthermore,
robustly filtering out non-character components or confidently verifying detected
text lines are even difficult themselves [1, 33, 14]. Another limitation is that the
sliding-window methods are computationally expensive, by running a classifier
on a huge number of the sliding windows.

Object detection. Convolutional Neural Networks (CNN) have recently
advanced general object detection substantially [25, 5, 6]. A common strategy
is to generate a number of object proposals by employing inexpensive low-level
features, and then a strong CNN classifier is applied to further classify and refine
the generated proposals. Selective Search (SS) [4] which generates class-agnostic
object proposals, is one of the most popular methods applied in recent leading
object detection systems, such as Region CNN (R-CNN) [6] and its extensions [5].
Recently, Ren et al. [25] proposed a Faster R-CNN system for object detection.
They proposed a Region Proposal Network (RPN) that generates high-quality
class-agnostic object proposals directly from the convolutional feature maps. The
RPN is fast by sharing convolutional computation. However, the RPN proposals
are not discriminative, and require a further refinement and classification by an
additional costly CNN model, e.g., the Fast R-CNN model [5]. More importantly,
text is different significantly from general objects, making it difficult to directly
apply general object detection system to this highly domain-specific task.

3 Connectionist Text Proposal Network

This section presents details of the Connectionist Text Proposal Network (CTP-
N). It includes three key contributions that make it reliable and accurate for
text localization: detecting text in fine-scale proposals, recurrent connectionist
text proposals, and side-refinement.

3.1 Detecting Text in Fine-scale Proposals

Similar to Region Proposal Network (RPN) [25], the CTPN is essentially a fully
convolutional network that allows an input image of arbitrary size. It detects a
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Fig. 2: Left: RPN proposals. Right: Fine-scale text proposals.

text line by densely sliding a small window in the convolutional feature maps,
and outputs a sequence of fine-scale (e.g., fixed 16-pixel width) text proposals,
as shown in Fig. 1 (b).

We take the very deep 16-layer vggNet (VGG16) [27] as an example to de-
scribe our approach, which is readily applicable to other deep models. Architec-
ture of the CTPN is presented in Fig. 1 (a). We use a small spatial window,
3×3, to slide the feature maps of last convolutional layer (e.g., the conv5 of
the VGG16). The size of conv5 feature maps is determined by the size of input
image, while the total stride and receptive field are fixed as 16 and 228 pixels,
respectively. Both the total stride and receptive field are fixed by the network
architecture. Using a sliding window in the convolutional layer allows it to share
convolutional computation, which is the key to reduce computation of the costly
sliding-window based methods.

Generally, sliding-window methods adopt multi-scale windows to detect ob-
jects of different sizes, where one window scale is fixed to objects of similar
size. In [25], Ren et al. proposed an efficient anchor regression mechanism that
allows the RPN to detect multi-scale objects with a single-scale window. The
key insight is that a single window is able to predict objects in a wide range
of scales and aspect ratios, by using a number of flexible anchors. We wish to
extend this efficient anchor mechanism to our text task. However, text differs
from generic objects substantially, which generally have a well-defined enclosed
boundary and center, allowing inferring whole object from even a part of it [2].
Text is a sequence which does not have an obvious closed boundary. It may in-
clude multi-level components, such as stroke, character, word, text line and text
region, which are not distinguished clearly between each other. Text detection
is defined in word or text line level, so that it may be easy to make an incorrect
detection by defining it as a single object, e.g., detecting part of a word. There-
fore, directly predicting the location of a text line or word may be difficult or
unreliable, making it hard to get a satisfied accuracy. An example is shown in
Fig. 2, where the RPN is directly trained for localizing text lines in an image.

We look for a unique property of text that is able to generalize well to text
components in all levels. We observed that word detection by the RPN is dif-
ficult to accurately predict the horizontal sides of words, since each character
within a word is isolated or separated, making it confused to find the start and
end locations of a word. Obviously, a text line is a sequence which is the main
difference between text and generic objects. It is natural to consider a text line
as a sequence of fine-scale text proposals, where each proposal generally rep-
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resents a small part of a text line, e.g., a text piece with 16-pixel width. Each
proposal may include a single or multiple strokes, a part of a character, a single
or multiple characters, etc. We believe that it would be more accurate to just
predict the vertical location of each proposal, by fixing its horizontal location
which may be more difficult to predict. This reduces the search space, compared
to the RPN which predicts 4 coordinates of an object. We develop a vertical an-
chor mechanism that simultaneously predicts a text/non-text score and y-axis
location of each fine-scale proposal. It is also more reliable to detect a general
fixed-width text proposal than identifying an isolate character, which is easily
confused with part of a character or multiple characters. Furthermore, detecting
a text line in a sequence of fixed-width text proposals also works reliably on text
of multiple scales and multiple aspect ratios.

To this end, we design the fine-scale text proposal as follow. Our detector
investigates each spatial location in the conv5 densely. A text proposal is defined
to have a fixed width of 16 pixels (in the input image). This is equal to move
the detector densely through the conv5 maps, where the total stride is exactly
16 pixels. Then we design k vertical anchors to predict y-coordinates for each
proposal. The k anchors have a same horizontal location with a fixed width
of 16 pixels, but their vertical locations are varied in k different heights. In
our experiments, we use ten anchors for each proposal, k = 10, whose heights
are varied from 11 to 273 pixels (by ÷0.7 each time) in the input image. The
explicit vertical coordinates are measured by the height and y-axis center of a
proposal bounding box. We compute relative predicted vertical coordinates (v)
with respect to the bounding box location of an anchor as,

vc = (cy − cay)/h
a, vh = log(h/ha) (1)

v∗c = (c∗y − cay)/h
a, v∗h = log(h∗/ha) (2)

where v = {vc, vh} and v∗ = {v∗c , v∗h} are the relative predicted coordinates and
ground truth coordinates, respectively. cay and ha are the center (y-axis) and
height of the anchor box, which can be pre-computed from an input image. cy
and h are the predicted y-axis coordinates in the input image, while c∗y and h∗

are the ground truth coordinates. Therefore, each predicted text proposal has a
bounding box with size of h × 16 (in the input image), as shown in Fig. 1 (b)
and Fig. 2 (right). Generally, an text proposal is largely smaller than its effective
receptive field which is 228×228.

The detection processing is summarised as follow. Given an input image, we
have W ×H ×C conv5 features maps (by using the VGG16 model), where C is
the number of feature maps or channels, and W ×H is the spatial arrangement.
When our detector is sliding a 3×3 window densely through the conv5, each
sliding-window takes a convolutional feature of 3 × 3 × C for producing the
prediction. For each prediction, the horizontal location (x-coordinates) and k-
anchor locations are fixed, which can be pre-computed by mapping the spatial
window location in the conv5 onto the input image. Our detector outputs the
text/non-text scores and the predicted y-coordinates (v) for k anchors at each
window location. The detected text proposals are generated from the anchors
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Fig. 3: Top: CTPN without RNN. Bottom: CTPN with RNN connection.

having a text/non-text score of > 0.7 (with non-maximum suppression). By
the designed vertical anchor and fine-scale detection strategy, our detector is
able to handle text lines in a wide range of scales and aspect ratios by using
a single-scale image. This further reduces its computation, and at the same
time, predicting accurate localizations of the text lines. Compared to the RPN
or Faster R-CNN system [25], our fine-scale detection provides more detailed
supervised information that naturally leads to a more accurate detection.

3.2 Recurrent Connectionist Text Proposals

To improve localization accuracy, we split a text line into a sequence of fine-scale
text proposals, and predict each of them separately. Obviously, it is not robust
to regard each isolated proposal independently. This may lead to a number of
false detections on non-text objects which have a similar structure as text pat-
terns, such as windows, bricks, leaves, etc. (referred as text-like outliers in [13]).
It is also possible to discard some ambiguous patterns which contain weak text
information. Several examples are presented in Fig. 3 (top). Text have strong
sequential characteristics where the sequential context information is crucial to
make a reliable decision. This has been verified by recent work [9] where a recur-
rent neural network (RNN) is applied to encode this context information for text
recognition. Their results have shown that the sequential context information is
greatly facilitate the recognition task on cropped word images.

Motivated from this work, we believe that this context information may also
be of importance for our detection task. Our detector should be able to explore
this important context information to make a more reliable decision, when it
works on each individual proposal. Furthermore, we aim to encode this infor-
mation directly in the convolutional layer, resulting in an elegant and seamless
in-network connection of the fine-scale text proposals. RNN provides a natural
choice for encoding this information recurrently using its hidden layers. To this
end, we propose to design a RNN layer upon the conv5, which takes the con-
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volutional feature of each window as sequential inputs, and updates its internal
state recurrently in the hidden layer, Ht,

Ht = φ(Ht−1, Xt), t = 1, 2, ...,W (3)

where Xt ∈ R3×3×C is the input conv5 feature from t-th sliding-window (3×3).
The sliding-window moves densely from left to right, resulting in t = 1, 2, ...,W
sequential features for each row. W is the width of the conv5. Ht is a recurrent
internal state that is computed jointly from both current input (Xt) and previ-
ous states encoded in Ht−1. The recurrence is computed by using a non-linear
function φ, which defines exact form of the recurrent model. We exploit the long
short-term memory (LSTM) architecture [12] for our RNN layer. The LSTM was
proposed specially to address vanishing gradient problem, by introducing three
additional multiplicative gates: the input gate, forget gate and output gate. De-
tails can be found in [12]. Hence the internal state in RNN hidden layer accesses
the sequential context information scanned by all previous windows through the
recurrent connection. We further extend the RNN layer by using a bi-directional
LSTM, which allows it to encode the recurrent context in both directions, so
that the connectionist receipt field is able to cover the whole image width, e.g.,
228 × width. We use a 128D hidden layer for each LSTM, resulting in a 256D
RNN hidden layer, Ht ∈ R256.

The internal state inHt is mapped to the following FC layer, and output layer
for computing the predictions of the t-th proposal. Therefore, our integration
with the RNN layer is elegant, resulting in an efficient model that is end-to-
end trainable without additional cost. The efficiency of the RNN connection is
demonstrated in Fig. 3. Obviously, it reduces false detections considerably, and
at the same time, recovers many missed text proposals which contain very weak
text information.

3.3 Side-refinement

The fine-scale text proposals are detected accurately and reliably by our CTPN.
Text line construction is straightforward by connecting continuous text proposals
whose text/non-text score is > 0.7. Text lines are constructed as follow. First,
we define a paired neighbour (Bj) for a proposal Bi as Bj− > Bi, when (i) Bj is
the nearest horizontal distance to Bi, and (ii) this distance is less than 50 pixels,
and (iii) their vertical overlap is > 0.7. Second, two proposals are grouped into a
pair, if Bj− > Bi and Bi− > Bj . Then a text line is constructed by sequentially
connecting the pairs having a same proposal.

The fine-scale detection and RNN connection are able to predict accurate
localizations in vertical direction. In horizontal direction, the image is divided
into a sequence of equal 16-pixel width proposals. This may lead to an inaccurate
localization when the text proposals in both horizontal sides are not exactly
covered by a ground truth text line area, or some side proposals are discarded
(e.g., having a low text score), as shown in Fig. 4. This inaccuracy may be not
crucial in generic object detection, but should not be ignored in text detection,
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Fig. 4: CTPN detection with (red box) and without (yellow dashed box) the
side-refinement. Color of fine-scale proposal box indicate a text/non-text score.

particularly for those small-scale text lines or words. To address this problem, we
propose a side-refinement approach that accurately estimates the offset for each
anchor/proposal in both left and right horizontal sides (referred as side-anchor
or side-proposal). Similar to the y-coordinate prediction, we compute relative
offset as,

o = (xside − cax)/w
a, o∗ = (x∗

side − cax)/w
a (4)

where xside is the predicted x-coordinate of the nearest horizontal side (e.g., left
or right side) to current anchor. x∗

side is the ground truth (GT) side coordinate in
x-axis, which is pre-computed from the GT bounding box and anchor location.
cax is the center of anchor in x-axis. wa is the width of anchor, which is fixed,
wa = 16 . The side-proposals are defined as the start and end proposals when we
connect a sequence of detected fine-scale text proposals into a text line. We only
use the offsets of the side-proposals to refine the final text line bounding box.
Several detection examples improved by side-refinement are presented in Fig. 4.
The side-refinement further improves the localization accuracy, leading to about
2% performance improvements on the SWT and Multi-Lingual datasets. Notice
that the offset for side-refinement is predicted simultaneously by our model, as
shown in Fig. 1. It is not computed from an additional post-processing step.

3.4 Model Outputs and Loss Functions

The proposed CTPN has three outputs which are jointly connected to the last FC
layer, as shown in Fig. 1 (a). The three outputs simultaneously predict text/non-
text scores (s), vertical coordinates (v = {vc, vh} in E.q. (2)) and side-refinement
offset (o). We explore k anchors to predict them on each spatial location in the
conv5, resulting in 2k, 2k and k parameters in the output layer, respectively.

We employ multi-task learning to jointly optimize model parameters. We in-
troduce three loss functions, Lcl

s , L
re
v and lreo , which compute errors of text/non-

text score, coordinate and side-refinement, respectively. With these considera-
tions, we follow the multi-task loss applied in [5, 25], and minimize an overall
objective function (L) for an image as,
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L(si,vj ,ok) =
1

Ns

∑
i

Lcl
s (si, s

∗
i ) +

λ1

Nv

∑
j

Lre
v (vj ,v

∗
j ) +

λ2

No

∑
k

Lre
o (ok,o

∗
k)(5)

where each anchor is a training sample, and i is the index of an anchor in a mini-
batch. si is the predicted probability of anchor i being a true text. s∗i = {0, 1}
is the ground truth. j is the index of an anchor in the set of valid anchors
for y-coordinates regression, which are defined as follow. A valid anchor is a
defined positive anchor (s∗j = 1, described below), or has an Intersection-over-
Union (IoU) > 0.5 overlap with a ground truth text proposal. vj and v∗

j are
the prediction and ground truth y-coordinates associated with the j-th anchor.
k is the index of a side-anchor, which is defined as a set of anchors within a
horizontal distance (e.g., 32-pixel) to the left or right side of a ground truth text
line bounding box. ok and o∗

k are the predicted and ground truth offsets in x-axis
associated to the k-th anchor. Lcl

s is the classification loss which we use Softmax
loss to distinguish text and non-text. Lre

v and Lre
o are the regression loss. We

follow previous work by using the smooth L1 function to compute them [5, 25].
λ1 and λ2 are loss weights to balance different tasks, which are empirically set
to 1.0 and 2.0. Ns Nv and No are normalization parameters, denoting the total
number of anchors used by Lcl

s , L
re
v and Lre

o , respectively.

3.5 Training and Implementation Details

The CTPN can be trained end-to-end by using the standard back-propagation
and stochastic gradient descent (SGD). Similar to RPN [25], training samples
are the anchors, whose locations can be pre computed in input image, so that
the training labels of each anchor can be computed from corresponding GT box.

Training labels. For text/non-text classification, a binary label is assigned
to each positive (text) or negative (non-text) anchor. It is defined by computing
the IoU overlap with the GT bounding box (divided by anchor location). A
positive anchor is defined as : (i) an anchor that has an > 0.7 IoU overlap with
any GT box; or (ii) the anchor with the highest IoU overlap with a GT box. By
the condition (ii), even a very small text pattern can assign a positive anchor.
This is crucial to detect small-scale text patterns, which is one of key advantages
of the CTPN. This is different from generic object detection where the impact of
condition (ii) may be not significant. The negative anchors are defined as < 0.5
IoU overlap with all GT boxes. The training labels for the y-coordinate regression
(v∗) and offset regression (o∗) are computed as E.q. (2) and (4) respectively.

Training data. In the training process, each mini-batch samples are collect-
ed randomly from a single image. The number of anchors for each mini-batch is
fixed to Ns = 128, with 1:1 ratio for positive and negative samples. A mini-patch
is pad with negative samples if the number of positive ones is fewer than 64. Our
model was trained on 3,000 natural images, including 229 images from the IC-
DAR 2013 training set. We collected the other images ourselves and manually
labelled them with text line bounding boxes. All self-collected training images
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are not overlapped with any test image in all benchmarks. The input image is
resized by setting its short side to 600 for training, while keeping its original
aspect ratio.

Implementation Details. We follow the standard practice, and explore the
very deep VGG16 model [27] pre-trained on the ImageNet data [26]. We initialize
the new layers (e.g., the RNN and output layers) by using random weights with
Gaussian distribution of 0 mean and 0.01 standard deviation. The model was
trained end-to-end by fixing the parameters in the first two convolutional layers.
We used 0.9 momentum and 0.0005 weight decay. The learning rate was set to
0.001 in the first 16K iterations, followed by another 4K iterations with 0.0001
learning rate. Our model was implemented in Caffe framework [17].

4 Experimental Results and Discussions

We evaluate the CTPN on five text detection benchmarks, namely the ICDAR
2011 [21], ICDAR 2013 [19], ICDAR 2015 [18], SWT [3], and Multilingual dataset
[24]. In our experiments, we first verify the efficiency of each proposed component
individually, e.g., the fine-scale text proposal detection or in-network recurrent
connection. The ICDAR 2013 is used for this component evaluation.

4.1 Benchmarks and Evaluation Metric

The ICDAR 2011 dataset [21] consists of 229 training images and 255 testing
ones, where the images are labelled in word level. The ICDAR 2013 [19] is similar
as the ICDAR 2011, and has in total 462 images, including 229 images and 233
images for training and testing, respectively. The ICDAR 2015 (Incidental Scene
Text - Challenge 4) [18] includes 1,500 images which were collected by using the
Google Glass. The training set has 1,000 images, and the remained 500 images
are used for test. This dataset is more challenging than previous ones by including
arbitrary orientation, very small-scale and low resolution text. The Multilingual
scene text dataset is collected by [24]. It contains 248 images for training and
239 for testing. The images include multi-languages text, and the ground truth
is labelled in text line level. Epshtein et al. [3] introduced the SWT dataset
containing 307 images which include many extremely small-scale text.

We follow previous work by using standard evaluation protocols which are
provided by the dataset creators or competition organizers. For the ICDAR 2011
we use the standard protocol proposed by [30], the evaluation on the ICDAR 2013
follows the standard in [19]. For the ICDAR 2015, we used the online evaluation
system provided by the organizers as in [18]. The evaluations on the SWT and
Multilingual datasets follow the protocols defined in [3] and [24] respectively.

4.2 Fine-Scale Text Proposal Network with Faster R-CNN

We first discuss our fine-scale detection strategy against the RPN and Faster
R-CNN system [25]. As can be found in Table 1 (left), the individual RPN is
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difficult to perform accurate text localization, by generating a large amount
of false detections (low precision). By refining the RPN proposals with a Fast
R-CNN detection model [5], the Faster R-CNN system improves localization
accuracy considerably, with a F-measure of 0.75. One observation is that the
Faster R-CNN also increases the recall of original RPN. This may benefit from
joint bounding box regression mechanism of the Fast R-CNN, which improves
the accuracy of a predicted bounding box. The RPN proposals may roughly
localize a major part of a text line or word, but they are not accurate enough
by the ICDAR 2013 standard. Obviously, the proposed fine-scale text proposal
network (FTPN) improves the Faster R-CNN remarkably in both precision and
recall, suggesting that the FTPN is more accurate and reliable, by predicting a
sequence of fine-scale text proposals rather than a whole text line.

4.3 Recurrent Connectionist Text Proposals

We discuss impact of recurrent connection on our CTPN. As shown in Fig. 3,
the context information is greatly helpful to reduce false detections, such as text-
like outliers. It is of great importance for recovering highly ambiguous text (e.g.,
extremely small-scale ones), which is one of main advantages of our CTPN,
as demonstrated in Fig. 6. These appealing properties result in a significant
performance boost. As shown in Table 1 (left), with our recurrent connection,
the CTPN improves the FTPN substantially from a F-measure of 0.80 to 0.88.

Running time. The implementation time of our CTPN (for whole detection
processing) is about 0.14s per image with a fixed short side of 600, by using a
single GPU. The CTPN without the RNN connection takes about 0.13s/image
GPU time. Therefore, the proposed in-network recurrent mechanism increase
model computation marginally, with considerable performance gain obtained.

Table 1: Component evaluation on the ICDAR 2013, and State-of-the-art
results on the SWT and MULTILINGUAL.

Components on ICDAR 2013 SWT MULTILINGUAL
Method P R F Method P R F Method P R F

RPN 0.17 0.63 0.27 Epshtein [3] 0.54 0.42 0.47 Pan [24] 0.65 0.66 0.66
Faster R-CNN 0.79 0.71 0.75 Mao [20] 0.58 0.41 0.48 Yin [33] 0.83 0.68 0.75
FTPN (no RNN) 0.83 0.78 0.80 Zhang [34] 0.68 0.53 0.60 Tian [28] 0.85 0.78 0.81

CTPN 0.93 0.83 0.88 CTPN 0.68 0.65 0.66 CTPN 0.84 0.80 0.82

4.4 Comparisons with state-of-the-art results

Our detection results on several challenging images are presented in Fig. 5. As
can be found, the CTPN works perfectly on these challenging cases, some of
which are difficult for many previous methods. It is able to handle multi-scale
and multi-language efficiently (e.g., Chinese and Korean).
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Fig. 5: CTPN detection results several challenging images, including multi-scale
and multi-language text lines. Yellow boxes are the ground truth.

Table 2: State-of-the-art results on the ICDAR 2011, 2013 and 2015.

ICDAR 2011 ICDAR 2013 ICDAR 2015
Method P R F Method P R F T(s) Method P R F

Huang [13] 0.82 0.75 0.73 Yin [33] 0.88 0.66 0.76 0.43 CNN Pro. 0.35 0.34 0.35
Yao [31] 0.82 0.66 0.73 Neumann [22] 0.82 0.72 0.77 0.40 Deep2Text 0.50 0.32 0.39
Huang [14] 0.88 0.71 0.78 Neumann [23] 0.82 0.71 0.76 0.40 HUST 0.44 0.38 0.41
Yin [33] 0.86 0.68 0.76 FASText [1] 0.84 0.69 0.77 0.15 AJOU 0.47 0.47 0.47
Zhang [34] 0.84 0.76 0.80 Zhang [34] 0.88 0.74 0.80 60.0 NJU-Text 0.70 0.36 0.47
TextFlow [28] 0.86 0.76 0.81 TextFlow [28] 0.85 0.76 0.80 0.94 StradVision1 0.53 0.46 0.50
Text-CNN [11] 0.91 0.74 0.82 Text-CNN [11] 0.93 0.73 0.82 4.6 StradVision2 0.77 0.37 0.50
Gupta [8] 0.92 0.75 0.82 Gupta [8] 0.92 0.76 0.83 0.07 Zhang [35] 0.71 0.43 0.54

CTPN 0.89 0.79 0.84 CTPN 0.93 0.83 0.88 0.14 ∗ CTPN 0.74 0.52 0.61

The full evaluation was conducted on five benchmarks. Image resolution is
varied significantly in different datasets. We set short side of images to 2000 for
the SWT and ICDAR 2015, and 600 for the other three. We compare our perfor-
mance against recently published results in [1, 28, 34]. As shown in Table 1 and 2,
our CTPN achieves the best performance on all five datasets. On the SWT, our
improvements are significant on both recall and F-measure, with marginal gain
on precision. Our detector performs favourably against the TextFlow on the Mul-
tilingual, suggesting that our method generalize well to various languages. On
the ICDAR 2013, it outperforms recent TextFlow [28] and FASText [1] remark-
ably by improving the F-measure from 0.80 to 0.88. The gains are considerable
in both precision and recall, with more than +5% and +7% improvements, re-
spectively. In addition, we further compare our method against [8, 11, 35], which
were published after our initial submission. It consistently obtains substantial
improvements on F-measure and recall. This may due to strong capability of
CTPN for detecting extremely challenging text, e.g., very small-scale ones, some
of which are even difficult for human. As shown in Fig. 6, those challenging ones
are detected correctly by our detector, but some of them are even missed by the
GT labelling, which may reduce our precision in evaluation.
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Fig. 6: CTPN detection results on extremely small-scale cases (in red boxes),
where some ground truth boxes are missed. Yellow boxes are the ground truth.

We further investigate running time of various methods, as compared in
Table 2. FASText [1] achieves 0.15s/image CPU time. Our method is slightly
faster than it by obtaining 0.14s/image, but in GPU time. Though it is not fair
to compare them directly, the GPU computation has become mainstream with
recent great success of deep learning approaches on object detection [25, 5, 6].
Regardless of running time, our method outperforms the FASText substantially
with 11% improvement on F-measure. Our time can be reduced by using a
smaller image scale. By using the scale of 450, it is reduced to 0.09s/image, while
obtaining P/R/F of 0.92/0.77/0.84 on the ICDAR 2013, which are compared
competitively against Gupta et al.’s approach [8] using 0.07s/image with GPU.

5 Conclusions

We have presented a Connectionist Text Proposal Network (CTPN) - an efficient
text detector that is end-to-end trainable. The CTPN detects a text line in a
sequence of fine-scale text proposals directly in convolutional maps. We develop
vertical anchor mechanism that jointly predicts precise location and text/non-
text score for each proposal, which is the key to realize accurate localization of
text. We propose an in-network RNN layer that connects sequential text propos-
als elegantly, allowing it to explore meaningful context information. These key
technical developments result in a powerful ability to detect highly challenging
text, with less false detections. The CTPN is efficient by achieving new state-of-
the-art performance on five benchmarks, with 0.14s/ image running time.
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