
Self-Supervised Robust Scene Flow Estimation via the Alignment of
Probability Density Functions

Pan He, Patrick Emami, Sanjay Ranka, Anand Rangarajan
Department of Computer and Information Science and Engineering, University of Florida

432 Newell Dr, Gainesville, FL 32611, USA
pan.he,pemami@ufl.edu; ranka,anand@cise.ufl.edu

Abstract
In this paper, we present a new self-supervised scene flow es-
timation approach for a pair of consecutive point clouds. The
key idea of our approach is to represent discrete point clouds
as continuous probability density functions using Gaussian
mixture models. Scene flow estimation is therefore converted
into the problem of recovering motion from the alignment
of probability density functions, which we achieve using a
closed-form expression of the classic Cauchy-Schwarz di-
vergence. Unlike existing nearest-neighbor-based approaches
that use hard pairwise correspondences, our proposed ap-
proach establishes soft and implicit point correspondences
between point clouds and generates more robust and ac-
curate scene flow in the presence of missing correspon-
dences and outliers. Comprehensive experiments show that
our method makes noticeable gains over the Chamfer Dis-
tance and the Earth Mover’s Distance in real-world environ-
ments and achieves state-of-the-art performance among self-
supervised learning methods on FlyingThings3D and KITTI,
even outperforming some supervised methods with ground
truth annotations.

Introduction
3D scene understanding (Qi et al. 2017a; Ilg et al. 2017; Liu,
Qi, and Guibas 2019; Wang et al. 2019; Choy, Gwak, and
Savarese 2019; He et al. 2021) of a dynamic environment
has drawn increasing attention recently due to its wide appli-
cations in virtual reality, robotics, and autonomous driving.
One fundamental task is scene flow estimation that aims at
obtaining a 3D motion field of a dynamic scene (Vedula et al.
1999). Traditional scene flow methods focus on learning rep-
resentations from stereo or RGB-D images (Basha, Moses,
and Kiryati 2013; Jaimez et al. 2015; Teed and Deng 2021).
Recently, researchers have started to design deep scene flow
estimation networks for 3D point clouds (Gu et al. 2019;
Liu, Qi, and Guibas 2019; Wu et al. 2020; Puy, Boulch, and
Marlet 2020; Mittal, Okorn, and Held 2020; Gojcic et al.
2021; He et al. 2021).

However, major scene flow approaches rely on supervised
learning with massive labeled training data that are expen-
sive and difficult to obtain in real-world environments (Gu
et al. 2019; Liu, Qi, and Guibas 2019; Puy, Boulch, and Mar-
let 2020). Consequently, researchers have turned to model

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

training with synthetic data and rich annotations followed
by a further fine-tuning step if necessary, or the use of self-
supervised learning objectives to eliminate any dependence
on labels. Early attempts at self-supervised scene flow esti-
mation assume that the scene flow can be approximated by a
point-wise transformation that moves the source point cloud
to the target one (Wu et al. 2020; Mittal, Okorn, and Held
2020; Kittenplon, Eldar, and Raviv 2021). The alignment of
point clouds is measured by popular similarity metrics such
as the Chamfer Distance (CD) or Earth Mover’s Distance
(EMD). However, for scene flow estimation, these metrics
are limited. CD is sensitive to outliers due to its nearest
neighbor criterion and tends to obtain a degenerate solution
as discussed in Mittal, Okorn, and Held (2020) and EMD is
computationally heavy and its approximations can achieve
poor performance in practice.

This paper presents a principled scene flow estimation ob-
jective that addresses both limitations; it is robust to miss-
ing correspondences and outliers and is efficient to com-
pute. We accomplish this by proposing to represent dis-
crete point clouds as continuous probability density func-
tions (PDFs) using Gaussian mixture models (GMMs) and
recovering motion by minimizing the divergence between
two GMMs. This is in contrast to previous nearest-neighbor-
based objectives which assume the existence of hard corre-
spondences between pairs of discrete points. Intuitively, if
point clouds are aligned well to each other, their resulting
mixtures should be statistically similar. We, therefore, can
obtain the approximated scene flow with a decent alignment
between the source and target point clouds. In summary, our
contributions are:

• A new perspective on self-supervised scene flow estima-
tion as minimizing the divergence between two GMMs.
The obtained soft correspondence between point cloud
pairs differs from the existing nearest-neighbor-based ap-
proaches with the assumption of an explicit hard corre-
spondence.

• A self-supervised objective that leverages the Cauchy-
Schwarz divergence for aligning two GMMs. It admits
an efficient closed-form expression and leads to more ro-
bust and accurate flow estimation over CD and EMD in
the presence of missing correspondences and outliers on
real-world datasets.

ar
X

iv
:2

20
3.

12
19

3v
1

 [
cs

.C
V

]
 2

3
M

ar
 2

02
2

• State-of-the-art performance compared to other advanced
self-supervised learning methods, even outperforming
some fully-supervised models that use ground truth an-
notations.

Related Work
Distance Measures for Point Clouds
Here we provide an overview of some representative dis-
tance measures for point clouds.

Chamfer Distance: Given two point sets P1 and P2, the
widely-used CD (Fan, Su, and Guibas 2017; Liu, Qi, and
Guibas 2019) is one variant of the Hausdorff distance (Rock-
afellar and Wets 2009), which is defined as

𝐷𝐶𝐷 (P1,P2) =
1

|P1 |
∑︁
𝑥∈P1

min
𝑦∈P2

𝑑2 (𝑥, 𝑦)

+ 1
|P2 |

∑︁
𝑦∈P2

min
𝑥∈P1

𝑑2 (𝑥, 𝑦).
(1)

Due to the unconstrained nearest neighbor search in CD,
more than one point in P1 can link to the same point in
P2 and vice versa. This many-to-one correspondence leads
to noisy training signals due to the improper matching of
outlier points, which are common in sparse and noisy Li-
DAR point clouds collected for popular autonomous driv-
ing datasets. Besides, as shown in Mittal, Okorn, and Held
(2020), due to potentially large errors in scene flow predic-
tion, given a source point 𝑝, estimated scene flow 𝑓𝑒𝑠𝑡 , and
ground truth scene flow 𝑓𝑔𝑡 , the nearest neighbor N(𝑝) of
the translated point 𝑝 = 𝑝 + 𝑓𝑒𝑠𝑡 may not necessarily be the
same as the real translated point 𝑝 = 𝑝 + 𝑓𝑔𝑡 , implying that
N(𝑝) . 𝑝 and noisy training signals indeed exist.

Earth Mover’s Distance: A popular and efficient approx-
imation of EMD (Rubner, Tomasi, and Guibas 2000; Fan,
Su, and Guibas 2017) establishes a one-to-one correspon-
dence, i.e., a bijection 𝜙 mapping P1 to P2, such that the
sum of distances between all point pairs is minimal:

𝐷𝐸𝑀𝐷 (P1,P2) = min
𝜙:P1→P2

∑︁
𝑥∈P1

𝑑 (𝑥, 𝜙(𝑥)). (2)

Obtaining an optimal mapping in EMD is non-trivial and
suffers from high computational cost forcing researchers
to introduce multiple approximations (Bertsekas 1992; Fan,
Su, and Guibas 2017; Atasu and Mittelholzer 2019). Be-
sides, because the approximate EMD focuses on a global
point alignment (unlike 𝐷𝐶𝐷), it tends to ignore local details
when obtaining the optimal mapping—wrongly matching
some points to distant points. Beyond these, other feature-
based distance measures are explored for describing point
cloud distances such as PointNet (Qi et al. 2017a) and
3DmFV (Ben-Shabat, Lindenbaum, and Fischer 2018).

As discussed above, both the CD and EMD can be sen-
sitive to outliers and can amplify model estimation errors
in a negative feedback loop during training. We address the
limitations of these similarity measures by presenting a new
differentiable objective function for scene flow estimation in
the presence of noise and outliers.

End-to-End Scene Flow Estimation
Directly estimating scene flow from point cloud pairs using
deep learning architectures has become a fast growing re-
search area.
Fully-Supervised Approaches. FlowNet3D (Liu, Qi, and
Guibas 2019) follows the PointNet++ architecture (Qi et al.
2017b) and introduces the flow embedding layer to aggregate
spatio-temporal relationships of point sets based on feature
similarities. HPLFlowNet (Gu et al. 2019) projects points
onto permutohedral lattices and conducts bilateral convo-
lutions for efficient processing, leading to competitive re-
sults. FLOT (Puy, Boulch, and Marlet 2020) follows optimal
transport (Peyré, Cuturi et al. 2019) to establish soft point
correspondences and further refine scene flow via a dynamic
graph. FlowStep3D (Kittenplon, Eldar, and Raviv 2021) and
PV-RAFT (Wei et al. 2021) iteratively refine scene flow pre-
dictions following (Teed and Deng 2020).
Self-Supervised Approaches. In (Mittal, Okorn, and Held
2020), they present a self-supervised scene flow approach
that addresses some limitations of CD using cycle consis-
tency, which is orthogonal to our objective. PointPWC-Net
(Wu et al. 2020) takes inspiration from the cost volume
for optical flow estimation (Sun et al. 2018) and general-
izes the concept in a coarse-to-fine scene flow architecture.
In (Pontes, Hays, and Lucey 2020), the authors regularize
scene flows from point clouds via graph construction and ap-
plication of the graph Laplacian. An adversarial learning ap-
proach for scene flow estimation (Zuanazzi et al. 2020) maps
point clouds to a latent space in which a robust distance
metric can be computed. Self-Point-Flow (Li, Lin, and Xie
2021) effectively leverages optimal transport (Peyré, Cuturi
et al. 2019) to generate noisy pseudo ground truth and re-
fines it via a random walk, in contrast to our end-to-end self-
supervised objective with a closed-form expression.

Most existing self-supervised scene flow approaches (Wu
et al. 2020; Mittal, Okorn, and Held 2020; Kittenplon, Eldar,
and Raviv 2021) explicitly establish hard point correspon-
dences between discrete point clouds based on the nearest
neighbor criterion. Unlike them, we represent discrete point
clouds as continuous PDFs, i.e., GMMs, and establish an im-
plicit soft point correspondence via minimization of the di-
vergence between the two corresponding mixtures. Our ap-
proach is less sensitive to the missing correspondences (e.g.,
due to occlusion or view changes) and outliers.

Point Set Registration
Kernel correlation-based registration was proposed in (Tsin
and Kanade 2004) to align two point sets seen as PDFs.
The method is further improved and generalized in (Roy,
Gopinath, and Rangarajan 2007; Jian and Vemuri 2010;
Hasanbelliu, Giraldo, and Prı́ncipe 2011) with other diver-
gences. Recently, deep learning methods have obtained im-
pressive results for point set registration (Wang and Solomon
2019; Aoki et al. 2019; Yew and Lee 2020).

DeepGMR (Yuan et al. 2020) presents a deep registra-
tion method that minimizes the Kullback–Leibler diver-
gence (Kullback and Leibler 1951) between point clouds.
Our approach is related to these as we also represent discrete
point clouds as PDFs to align them.

Problem Definition
Point clouds can represent raw data, e.g., 3D shapes, or the
surfaces from which they are sampled, e.g., those collected
or reconstructed from LiDAR or RGB-D sensors. Our goal
is to estimate 3D scene flow from consecutive point cloud
frames. Denote the source point cloud as S = {(csi ,x

s
i) |

𝑖 = 1, . . . , 𝑁} and target point cloud as T = {(ctj ,x
t
j) |

𝑗 = 1, . . . , 𝑀}, where csi , c
t
j are the 3D coordinates of in-

dividual points and xs
i ,x

t
j are the associated point features,

e.g., color or LiDAR intensity. Due to the viewpoint shift,
occlusion and sampling effect, S and T do not necessarily
have the same number of points or have strict point-to-point
correspondences. Considering points si = (csi ,x

s
i) in the

source point cloud S being moved to a new location ĉs
i

at
the target frame and denoting its 3D motion as di = ĉs

i
−csi ,

a scene flow estimation model will predict the motion for
every sampled point si in the source point cloud S via a
function 𝑓 : D = {di = 𝑓 (S,T)𝑖 | 𝑖 = 1, . . . , 𝑁} such that
they are close to real motion.

Proposed Approach
In this section, we introduce the proposed approach for rep-
resenting and aligning discrete point clouds using PDFs. To
the best of our knowledge, this is the first attempt at doing
so for scene flow estimation.

Mixture Models for Representing Point Clouds
Unlike existing self-supervised learning objectives such as
CD and EMD that rely on hard pairwise correspondences
between discrete point clouds, the key idea of our paper is to
represent point clouds by PDFs to obtain a soft correspon-
dence. We demonstrate the conceptual differences between
CD, EMD, and CS in Figure 2. The main intuition is that
point clouds can be interpreted as samples drawn from con-
tinuous spatial distributions of point locations. By doing so,
we can capture the uncertainty in point cloud generation,
e.g., jitter introduced during the LiDAR scanning process.

Formally, for a given point cloud x, we represent it as
the PDF of a general Gaussian mixture, which is defined as
G(𝑥) = ∑𝐾

𝑘=1 𝑤𝑘N(𝑥 |µk,𝚺k) with

N(𝑥 |µk,𝚺k) =
exp

[
− 1

2 (𝑥 − µk)𝑇 𝚺−1
k (𝑥 − µk)

]√︁
(2𝜋)𝑑 |𝚺k |

, (3)

where 𝐾 is the number of Gaussian components. We denote
𝑤𝑘 , 𝜇𝑘 ,Σ𝑘 as the mixture coefficient, mean, and covariance
matrix of the 𝑘 𝑡ℎ component of G(𝑥). 𝑑 is the feature dimen-
sion of each point. In our case, 𝑑 = 3. |𝚺k | ≡ det𝚺k is the
determinant of 𝚺k, also known as the generalized variance.
Note that if 𝐾 is large enough, G(𝑥) can well approximate
almost any underlying density of a point cloud.

Inspired by (Jian and Vemuri 2010; Roy, Gopinath, and
Rangarajan 2007), we simplify the GMMs as follows: 1) the
number of Gaussian components is the number of points
with uniform weights (the occupancy probabilities or the
mixture coefficients), 2) the mean vector of a component is
the location of each point, and 3) all components share the

same variance (isotropic, or spherical covariances), i.e., Σ𝑖 =
Σ 𝑗 = 𝜎I with the identity matrix I . We, therefore, obtain an
overparameterized GMM model which can be equivalently
obtained from a fixed-bandwidth kernel density estimation
(KDE) with a Gaussian kernel (Scott 2015). More com-
plicated GMMs are non-trivial and would require compu-
tationally expensive model fitting such as the Expectation-
Maximization (EM) algorithm (Moon 1996), which we do
not explore in this paper and instead reserve for future work.

Recovering Motion from the Alignment of PDFs
The principle of PDF divergence minimization results in the
specification of a self-supervised learning objective that op-
timizes a scene flow model such that a dissimilarity mea-
sure 𝐷𝑑𝑠𝑖𝑚 (G(S𝑤),G(T)) between the GMM represen-
tations of the warped point cloud G(S𝑤) = G(S + D)
and the target point cloud G(T) is minimized. Recall that
D = {di = 𝑓 (S,T)𝑖 | 𝑖 = 1, . . . , 𝑁} where 𝑓 is imple-
mented as a deep neural network. We can construct a suit-
able 𝐷𝑑𝑠𝑖𝑚 such that it is differentiable so it can guide opti-
mization via backpropagation and gradient descent. We now
describe how to achieve this goal.

We choose the Cauchy-Schwarz (CS) divergence (Jenssen
et al. 2005; Principe 2010) for measuring the similarity be-
tween the two GMM representations of point clouds S𝑤 and
T . The CS divergence can be expressed in closed-form, al-
lowing an efficient end-to-end trainable implementation for
scene flow estimation. We optimize 𝑓 by minimizing

D𝐶𝑆 (G(S𝑤),G(T)) = − log
(∫

G(S𝑤)G(T)𝑑𝑥√︃∫
G2 (S𝑤)𝑑𝑥

∫
G2 (T)𝑑𝑥

)
= − log

∫
G(S𝑤)G(T)𝑑𝑥 + 0.5 log

∫
G2 (S𝑤)𝑑𝑥

+ 0.5 log
∫

G2 (T)𝑑𝑥.
(4)

The CS divergence is derived from the CS inequality (Steele
2004) and is expressed as inner products of PDFs. It defines
a symmetric measure for any two PDFs G(S𝑤) and G(T)
such that 0 ≤ 𝐷𝐶𝑆 < ∞ where the minimum is obtained
iff G(S𝑤) = G(T). It measures the interaction of the gen-
erated field of one PDF on the locations of the other PDF,
which is also called the cross information potential of the
two densities (Hasanbelliu, Giraldo, and Prı́ncipe 2011).

Closed-form expression for GMMs: The CS divergence
in Equation 4 can be written in a closed-form expression for
GMMs (Jenssen et al. 2006). The basic idea is to follow the
Gaussian identity (Petersen, Pedersen et al. 2008) to obtain
the product of two Gaussian PDFs as

N(x|µi,𝚺i)N (x|µj , 𝚪j) =
N(µi |µj ,𝚺i + 𝚪j)N (𝑥 |µ𝒊 𝒋 ,𝚺𝒊 𝒋)

(5)

where
µ𝒊 𝒋 = 𝚺𝒊 𝒋 (𝚺−1

i µ𝒊 + 𝚪−1
j µ𝒋) (6)

and
𝚺𝒊 𝒋 = (𝚺−1

i + 𝚪−1
j)−1

. (7)

Figure 1: Overview of the proposed self-supervised learning for scene flow estimation. Our model takes both source and target
point clouds to extract deep features via a UNet-like encoder-decoder backbone network (Ronneberger, Fischer, and Brox 2015)
based on MinkowskiNet (Choy, Gwak, and Savarese 2019). We then warp the source point cloud by adding the estimated scene
flow. Both the warped source and target point clouds are further fit using two separate GMMs. We train the model by minimizing
the discrepancy between the two corresponding mixtures via a closed-form expression for the CS divergence.

Then we can use the Gaussian identity trick to simplify each
term in the right of Equation 4 and get

D𝐶𝑆 (G(S𝑤),G(T)) = − log
(𝑁 ,𝑀∑︁
𝑖, 𝑗=1

𝜋𝑖𝜏𝑗N(csi |c
t
j ,𝚺i + 𝚪j)

)
+ 0.5 log

(𝑁 ,𝑁∑︁
𝑖,𝑖′=1

𝜋𝑖𝜋𝑖′N(csi |c
s
𝒊′ ,𝚺i + 𝚺𝒊′)

)
+ 0.5 log

(𝑀,𝑀∑︁
𝑗 , 𝑗′=1

𝜏𝑗𝜏𝑗′N(ctj |c
t
𝒋′ , 𝚪j + 𝚪 𝒋′)

)
,

(8)

where we denote the sets of mixture coefficients for two
GMMs G(S𝑤) and G(T) as {𝜋𝑖}𝑁𝑖=1 and {𝜏𝑗 }𝑀𝑗=1 and
the corresponding covariance matrix sets as {Σ𝑖}𝑁𝑖=1 and
{Γ 𝑗 }𝑀𝑗=1. Note that the third term in the right of Equation 8 is
a constant value for a target point cloud and can be option-
ally removed for faster computation. The detailed derivation
of D𝐶𝑆 (G(S𝑤),G(T)) can be found in the appendix.

Discussion: Examining D𝐶𝑆 (G(S𝑤),G(T)), we can see
that the exponential function in the Normal PDFs applied to
the square of the point-pair distances weighed by a combi-
nation of Σ𝑖 and Γ 𝑗 mitigates over-sensitivity to outliers by
suppressing large squared distances. This is in contrast to the
ℓ2 distance-based approaches such as CD and EMD where
outliers can contribute large values to the loss and negatively
impact training. Also, it is fully differentiable and can be
easily implemented with a few lines of code, which we pro-
vide in the appendix, in contrast to the sub-differentiable CD
due to the min operator and the sub-optimal EMD approx-
imation with expensive computation (Fan, Su, and Guibas
2017). Due to the probabilistic formulation, it supports the
processing of point clouds with different sizes while being
tolerant to noise. The conceptual difference between CD,
EMD, and CS is illustrated in Figure 2. We note that CS is
also closely related to graph cuts and Mercer kernel theory
(see (Jenssen et al. 2006) for a detailed discussion).

Figure 2: A toy example to illustrate the conceptual differ-
ence between CD, EMD, and CS. For CD and EMD, we
visualize their matching correspondences between points of
blue and orange curves by adding blue (the forward match-
ing) and green (the backward matching) arrows. CD and the
EMD approximation find the hard pairwise correspondence
while (Fan, Su, and Guibas 2017) CS tries to link every blue
point to all orange points via Gaussian functions — here we
only show N(csi |c

t
j ,𝚺i + 𝚪j) in Equation 8 and weight the

arrow color according to their values.

Model Implementation
We now demonstrate a deep neural network for self-
supervised scene flow estimation that is trained with the CS
divergence (Figure 1). It consists of : 1) deep feature extrac-
tion, 2) scene flow estimation from soft correspondences and
3) our CS divergence objective. We also add other regular-
ization techniques to regularize the unconstrained scene flow
predictions by encouraging rigid motion in local regions.
Deep Feature Extraction: To obtain features that en-
code raw point coordinates into higher dimension, we uti-
lize a UNet-like encoder-decoder backbone network (Ron-
neberger, Fischer, and Brox 2015) based on MinkowskiNet
(Choy, Gwak, and Savarese 2019). It receives inputs that are
voxelized from point clouds. Denote these sparse voxels as
𝑉 𝑠 ∈ R𝑁 𝑠×3 and 𝑉 𝑡 ∈ R𝑁 𝑡×3 for S and T respectively.
Both 𝑉 𝑠 and 𝑉 𝑡 will be feed into a same backbone with
shared weights to obtain their corresponding deep features
𝐹𝑠 ∈ R𝑁 𝑠×64 and 𝐹𝑡 ∈ R𝑁 𝑡×64.
Scene Flow Estimation: Similar to (Puy, Boulch, and Mar-
let 2020; Wei et al. 2021), we construct a cost matrix C ∈

R𝑁
𝑠×𝑁 𝑡

and establish a soft-correspondence between sparse
voxels. Formally, we compute a cost between every point
𝑓 𝑠
𝑖
∈ 𝐹𝑠 and every point 𝑓 𝑡

𝑗
∈ 𝐹𝑡 defined as

C𝑖 𝑗 = 1 −
〈 𝑓 𝑠
𝑖
, 𝑓 𝑡
𝑗
〉

‖ 𝑓 𝑠
𝑖
‖2‖ 𝑓

𝑡
𝑗
‖

2

. (9)

Based on the cost matrix C, we find the top-K smallest
values for each sparse voxel 𝑣𝑠

𝑖
∈ 𝑉 𝑠 regarding 𝑉 𝑡 , whose

corresponding index set is denoted as N 𝑘
𝑖

. We then estimate
the scene flow of 𝑣𝑠

𝑖
as

𝑑𝑣𝑖 =

∑
𝑗∈N𝑘

𝑖
T𝑖 𝑗𝑣𝑡𝑗∑

𝑗∈N𝑘
𝑖
T𝑖 𝑗

− 𝑣𝑠𝑖 . (10)

where T𝑖 𝑗 = exp(−C𝑖 𝑗/𝜖). We empirically set 𝜖 = 0.00625.
Therefore, 𝑑𝑣

𝑖
is the weighted distance between 𝑣𝑠

𝑖
and its

top-K points {𝑣𝑡
𝑗
| 𝑗 ∈ N 𝑘

𝑖
, |N 𝑘

𝑖
| ≤ 𝑁 𝑡 }. We apply the

inverse-distance weighted interpolation to transfer the flow
for the sparse voxels to each point 𝑠𝑖 = {𝑐𝑠

𝑖
, 𝑥𝑠
𝑖
} in 𝑆:

𝑑𝑠𝑖 =

∑
𝑗:𝑣𝑠

𝑗
∈M(𝑠𝑖) 𝑑

𝑣
𝑖
‖𝑣𝑠
𝑗
− 𝑐𝑠

𝑖
‖−1

2∑
𝑗:𝑣𝑠

𝑗
∈M(𝑠𝑖) ‖𝑣𝑠𝑗 − 𝑐𝑠𝑖 ‖−1

2
, (11)

where M(𝑠𝑖) finds the k-nearest neighbor (KNN) voxels of
the point 𝑠𝑖 based on the Euclidean distance.

Training
Our model is trained end-to-end without requiring any
ground-truth scene flow annotations.
The CS divergence loss: We use the introduced CS diver-
gence for self-supervised learning.

𝐸𝑐𝑠 (D) = D𝐶𝑆 (G(S𝑤),G(T)), (12)

where we add the predicted scene flow D to the source point
cloud S to obtain S𝑤 . It aligns the warped source and target
point clouds.
The graph Laplacian loss: As each estimated scene flow
vector in D has three degrees of freedom, only applying
CS is under-constrained with many possible estimations. We
further regularize them by adding an extra constraint to en-
force the transformation to be as rigid as possible (Bobenko
and Springborn 2007), which we formulate as

𝐸𝑟 (D) =
∑︁

{𝑖, 𝑗 }∈𝐸
‖𝑑𝑖 − 𝑑 𝑗 ‖1, (13)

where 𝐸 defines the edge set of a graph 𝐺 built upon the
source point cloud S. There exist various ways of construct-
ing the graph: KNN graphs, fixed-Radius Nearest Neighbor
graphs are possibilities. Following (Pontes, Hays, and Lucey
2020), we adopt the KNN graph due to its better sparsity and
connectivity properties. We reformulate Equation 13 as

𝐸𝑟 (D) = 1
|S|

𝑁∑︁
𝑖=1

1
|I(𝑠𝑖) |

∑︁
𝑗∈I(𝑠𝑖)

‖𝑑𝑖 − 𝑑 𝑗 ‖1, (14)

where I(𝑠𝑖) denotes the index set of the k-nearest neighbor
points of 𝑠𝑖 in S. We empirically set 𝑘 = 50 leaving this
choice up for future exploration.

The full objective function is a weighted sum of the CS
divergence loss and the graph Laplacian loss:

𝐸 (D) = 𝐸𝑐𝑠 (D) + 𝜆𝐸𝑟 (D) (15)

where 𝜆 is a hyperparameter to balance two terms. The first
term minimizes the discrepancy between the mixtures repre-
senting the warped source point cloud S +D and the target
T . The second term enforces the predicted flows of nearby
points to be similar to each other.

Experiments
In this section, we describe the datasets and the associated
evaluation metrics. We demonstrate the advantage of the
proposed CS divergence loss over CD and EMD. Our pro-
posed approach achieves state-of-the-art performance com-
pared to self-supervised learning approaches and even sur-
passes some fully supervised methods.

Datasets and Evaluation Metrics
FlyingThings3D (FT3D): The dataset (Mayer et al. 2016) is
the first large-scale synthetic dataset designed for scene flow
estimation where each scene contains multiple randomly-
moving objects taken from the ShapeNet dataset (Chang
et al. 2015). Following (Liu, Qi, and Guibas 2019; Gu et al.
2019), we reconstructed point clouds and their ground truth
scene flows, ending up with a total of 19, 640 training exam-
ples and 3, 824 test examples. We selected 3, 928 examples
from the training set for a hold-out validation.
KITTI Scene Flow (KSF): This real-world dataset (Menze,
Heipke, and Geiger 2015; Menze and Geiger 2015) is
adapted from the KITTI Scene Flow benchmark with 142
frame pairs. We obtained point clouds and ground truth
scene flow by lifting the ground-truth disparity maps and
optical flow to 3D (Gu et al. 2019). We removed ground
points by heuristically setting a height threshold (Liu, Qi,
and Guibas 2019; Gu et al. 2019).
Unlabelled KITTI𝑟 Dataset: The KITTI𝑟 dataset is pre-
pared by (Li, Lin, and Xie 2021) where they use raw point
clouds in KITTI to produce a training dataset. It collects
samples from those scenes not included in KSF and guar-
antees separate training and testing splits. It results in 6, 068
training point cloud pairs sampled at every five frames.
Evaluation Metrics: We use the standard evaluation met-
rics (Liu, Qi, and Guibas 2019; Gu et al. 2019; Puy, Boulch,
and Marlet 2020): 1) the EPE3D[m], or the end-point error,
which calculates the mean absolute distance error in meters,
2) the strict ACC3D (Acc3DS) considering the percentage of
points whose 𝐸𝑃𝐸3𝐷 [𝑚] < 0.05𝑚 or relative error < 5%,
3) the relaxed ACC3D (Acc3DR) considering the percent-
age of points whose 𝐸𝑃𝐸3𝐷 [𝑚] < 0.1𝑚 or relative error
< 10%, and 4) the Outliers3D to compute the percentage of
points whose 𝐸𝑃𝐸3𝐷 [𝑚] > 0.3𝑚 or relative error > 10%.

Implementation Details
We randomly sampled 8, 192 points for each point cloud. All
models were implemented in Pytorch (Paszke et al. 2019)
and MinkowskiEngine (Choy, Gwak, and Savarese 2019).
We utilized the Adam optimizer (Kingma and Ba 2014) with

an initial learning rate of 0.001 and the cosine annealing
scheduler to gradually decrease it based on the epoch num-
ber. We trained models for 100 epochs and voxelized points
at a resolution of 0.1m.

Comparison with CD and EMD
To verify the robustness of CS, we conduct one critical
study of training models on KITTI𝑟 . Specifically, to make
a fair comparison, we use our model with the same ar-
chitecture while applying different self-supervised objective
functions including CD, EMD, and CS. We then evaluate
these trained models on KSF with ground truth annotations.
Because the KITTI𝑟 dataset is collected from autonomous
vehicles across real-world environments with varied con-
ditions, it tends to include more noise and outliers when
compared to synthetic datasets. Therefore, we would ex-
pect models trained with a more robust objective function
to achieve better performance.

As shown in Table 1, our model trained with CS outper-
forms both models with CD and EMD significantly. Specifi-
cally, it achieves a much lower EPE of 0.105, decreasing the
errors of CD and EMD by 38.24% and 45.31%. It shows that
CS is much more robust when conducting self-supervised
learning on the real-world KITTI𝑟 dataset. Furthermore, it
has achieved better performance compared to some rep-
resentative state-of-the-art supervised methods, such as
Flownet3D (Liu, Qi, and Guibas 2019), HPLFlowNet (Gu
et al. 2019), and EgoFlow (Tishchenko et al. 2020).

Ablation Studies
Choices of the kernel bandwidth σ: Recall that the CS di-
vergence with GMMs is closely related to fixed bandwidth
KDE with Gaussian kernels. The KDE bandwidth equals the
scale parameter (standard deviation) of a Gaussian kernel.
It is important to choose a suitable bandwidth (correspond-
ing to the square root of the isotropic variance in GMM
models)—either too large or too small bandwidth values will
not best approximate the true underlying density, resulting in
degraded performance.

As shown in Figure 3, we plot the results by choosing
different variances 𝜎2 = 0.1, 0.01, 0.001, 0.0001 where 𝜎
is the kernel bandwidth. When setting a large variance such
as 𝜎2 = 0.1, it leads to oversmoothing where some impor-
tant local structures, e.g., curvatures of a shape, are ignored
due to a large amount of smoothing. A small variance such
as 𝜎2 = 0.0001 tends to generate darting structures on a
density curve which is sensitive to noise—considering its
extreme situation (𝜎 → 0) that changes a Gaussian PDF
to a Dirac delta function. The results show that choosing
𝜎2 = 0.01 or 𝜎2 = 0.001 leads to good results. Neverthe-
less, such a bandwidth selection can vary across datasets de-
pending on the underlying data characteristics. We also ex-
plored conventional bandwidth selection methods including
Silverman’s rule of thumb (Silverman 2018) and Improved
Sheater-Jones (ISJ) (Botev, Grotowski, and Kroese 2010).
They achieve worse results, which might be caused by the
improper data assumption, e.g., unimodal distribution in Sil-
verman’s rule, and uncertainty not being captured.

Table 1: Comparisons between models trained with different
self-supervised objective functions, i.e., CD, EMD, and CS.
We evaluate all trained models on the KITTI Scene Flow
dataset. We find that CS is more robust to noise in LiDAR
datasets than CD and EMD.

Method Sup. Training data EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
Flownet3D (2019) Full FT3D 0.177 0.374 0.668 0.527
HPLFlowNet (2019) Full FT3D 0.117 0.478 0.778 0.410
EgoFlow (2020) Full FT3D 0.103 0.488 0.822 0.394

CD (Ours) Self KITTI𝑟 0.170 0.477 0.697 0.470
EMD (Ours) Self KITTI𝑟 0.192 0.426 0.666 0.503
CS (Ours) Self KITTI𝑟 0.105 0.633 0.832 0.338

EPE3D [m] Acc3DS Acc3DR Outliers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ab
so

lu
te

 V
al

ue
s

0.1
0.01

0.001
0.0001

Improved Sheater-Jones
Silverman's rule of thumb

Figure 3: Results of CS with different kernel bandwidths.
Choosing a suitable bandwidth leads to best performance.

Table 2: Impact of graph Laplacian regularization. Choosing
a proper 𝜆 leads to further improvements.

Regularization Sup. Training data EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
w/o (𝜆=0) Self KITTI𝑟 0.105 0.633 0.832 0.338

𝜆 = 100 Self KITTI𝑟 0.109 0.639 0.824 0.332
𝜆 = 10 Self KITTI𝑟 0.096 0.686 0.855 0.302
𝜆 = 1 Self KITTI𝑟 0.098 0.659 0.853 0.316
𝜆 = 0.1 Self KITTI𝑟 0.103 0.631 0.840 0.331

Impact of graph Laplacian regularization: Encouraging
rigid scene estimation via proper regularization is a critical
step in handling datasets with many rigid objects. Under-
regularization with an inadequately small 𝜆 has nearly no
impact on original estimation with many possible predic-
tions. Over-regularization with an excessively large 𝜆 adds
over-strict constraints and leads to imperfect alignment be-
tween GMMs. Results are summarized in Table 2. Choosing
a proper 𝜆 leads to further improvements on scene flow pre-
diction, resulting in an roughly increase of 5% and 3% in
absolute accuracy on Acc3DS and Acc3DR and about a de-
crease of 3% in absolute error on Outliers.

Evaluation on FlyingThings3D
We demonstrate its effectiveness by training on the FT3D
dataset without using any ground truth annotations. Table
3 summarizes the evaluation results on the test split of the
FT3D dataset. Due to the better model design and objective

OursCDEMDInput

0.3
EPE3D[m]

0.0

Figure 4: Qualitative results of our method on KSF. We clip the EPE3D[m] to the range between 0.0 m (white) and 0.3 (red). It
confirms that our method is better on handling outliers compared to EMD and CD.

Table 3: Evaluation results on the FT3D datasets.

Method Sup. EPE3D[m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
FlowNet3D (2019) Full 0.114 0.412 0.771 0.602
HPLFlowNet (2019) Full 0.080 0.614 0.855 0.429
PointPWC-Net (2020) Full 0.059 0.738 0.928 0.342
FLOT (2020) Full 0.052 0.732 0.927 0.357
EgoFlow (2020) Full 0.069 0.670 0.879 0.404
R3DSF (2021) Full 0.052 0.746 0.936 0.361
PV-RAFT (2021) Full 0.046 0.817 0.957 0.292
FlowStep3D (2021) Full 0.046 0.816 0.961 0.217

ICP (rigid) (1992) Self 0.406 0.161 0.304 0.880
FGR (rigid) (2016) Self 0.402 0.129 0.346 0.876
CPD (non-rigid) (2010) Self 0.489 0.054 0.169 0.906
EgoFlow (2020) Self 0.170 0.253 0.550 0.805
PointPWC-Net (2020) Self 0.121 0.324 0.674 0.688
FlowStep3D (2021) Self 0.085 0.536 0.826 0.420
Ours Self 0.075 0.589 0.862 0.470

function, our method outperforms all recent self-supervised
frameworks including PointPWC-Net (Wu et al. 2020) and
FlowStep3D (Kittenplon, Eldar, and Raviv 2021) and some
full-supervised methods such as Flownet3D (Liu, Qi, and
Guibas 2019) and HPLFlowNet (Gu et al. 2019). Specif-
ically, among all self-supervised approaches, our RSFNet
obtains the best values on 𝐸𝑃𝐸3𝐷 [𝑚], 𝐴𝑐𝑐3𝐷𝑆, and
𝐴𝑐𝑐3𝐷𝑅, decreasing the 𝐸𝑃𝐸3𝐷 [𝑚] of the previous best
model (FlowStep3D) by 11.76% and increasing 𝐴𝑐𝑐3𝐷𝑆
and 𝐴𝑐𝑐3𝐷𝑅 of it by 9.88% and 4.36%. Note that Flow-
Step3D has conducted multiple inference steps to iteratively
refine the scene flow prediction while our method is more
efficient with one-step inference (see the appendix).

Evaluation on KITTI Scene Flow
We apply the trained model from the FT3D dataset to the un-
seen KSF dataset. As shown in Table 4, our method shows
a good generalization result — achieving a lower 3D end-
point error 0.092 and higher accuracy (near 4% absolute
accuracy improvement over (Kittenplon, Eldar, and Raviv
2021)). Models from the KITTI𝑟 also perform competitively

Table 4: Evaluation results on the KITTI scene flow datasets.

Method Sup. EPE3D[m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
Flownet3D (2019) Full 0.177 0.374 0.668 0.527
HPLFlowNet (2019) Full 0.117 0.478 0.778 0.410
PointPWC-Net (2020) Full 0.069 0.728 0.888 0.265
FLOT (2020) Full 0.056 0.755 0.908 0.242
EgoFlow (2020) Full 0.103 0.488 0.822 0.394
R3DSF (2021) Full 0.042 0.849 0.959 0.208
PV-RAFT (2021) Full 0.056 0.823 0.937 0.216
FlowStep3D (2021) Full 0.055 0.805 0.925 0.149

ICP(rigid) (1992) Self 0.518 0.067 0.167 0.871
FGR(rigid) (2016) Self 0.484 0.133 0.285 0.776
CPD (non-rigid) (2010) Self 0.414 0.206 0.400 0.715
EgoFlow (2020) Self 0.415 0.221 0.372 0.810
PointPWC-Net (2020) Self 0.255 0.238 0.496 0.686
FlowStep3D (2021) Self 0.102 0.708 0.839 0.246
Ours Self 0.092 0.747 0.870 0.283
Ours Self ∗ 0.096 0.686 0.855 0.302

* denotes models trained with KITTI𝑟

though trained on a much smaller dataset containing 6068
training samples, in contrast to 15, 712 training samples in
the FT3D, which shows a promising direction to close the
synthetic-to-real gap with real-world training data. More re-
sults and details can be found in the appendix.

Conclusions

In this work, we have presented a novel self-supervised
scene flow estimation approach that represents discrete point
clouds as continuous Gaussian mixture PDFs and recovers
motion from their alignment. Models trained with CS show
more robustness and higher accuracy compared to CD and
EMD. The resulting models have achieved state-of-the-art
performance on standard datasets including FT3D and KSF.
We are encouraged by this to attempt the design of advanced
iterative refinement techniques for better scene flow estima-
tion in future work.

Acknowledgements
This work is supported by NSF CNS 1922782. The opin-
ions, findings and conclusions expressed in this publication
are those of the author(s) and not necessarily those of the
National Science Foundation.

References
Aoki, Y.; Goforth, H.; Srivatsan, R. A.; and Lucey, S. 2019.
PointNetLK: Robust & Efficient Point Cloud Registration
using PointNet. In IEEE Conference on Computer Vision
and Pattern Recognition, 7163–7172. IEEE.
Atasu, K.; and Mittelholzer, T. 2019. Linear-complexity
data-parallel earth mover’s distance approximations. In
International Conference on Machine Learning, 364–373.
PMLR.
Basha, T.; Moses, Y.; and Kiryati, N. 2013. Multi-view
Scene Flow Estimation: A View Centered Variational Ap-
proach. International Journal of Computer Vision, 101(1):
6–21.
Ben-Shabat, Y.; Lindenbaum, M.; and Fischer, A. 2018.
3DmFV: Three-Dimensional Point Cloud Classification in
Real-Time using Convolutional Neural Networks. IEEE
Robotics and Automation Letters, 3(4): 3145–3152.
Bertsekas, D. P. 1992. Auction Algorithms for Network
Flow Problems: A Tutorial Introduction. Computational op-
timization and applications, 1(1): 7–66.
Besl, P. J.; and McKay, N. D. 1992. Method for Registration
of 3-D Shapes. In Sensor Fusion IV: Control Paradigms
and Data Structures, volume 1611, 586–606. International
Society for Optics and Photonics.
Bobenko, A. I.; and Springborn, B. A. 2007. A Discrete
Laplace–Beltrami Operator for Simplicial Surfaces. Dis-
crete & Computational Geometry, 38(4): 740–756.
Botev, Z. I.; Grotowski, J. F.; and Kroese, D. P. 2010. Kernel
Density Estimation via Diffusion. The Annals of Statistics,
38(5): 2916–2957.
Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.;
Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su,
H.; et al. 2015. ShapeNet: An Information-Rich 3D Model
Repository. arXiv preprint arXiv:1512.03012.
Choy, C.; Gwak, J.; and Savarese, S. 2019. 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition, 3075–3084.
Fan, H.; Su, H.; and Guibas, L. J. 2017. A Point Set Gener-
ation Network for 3D Object Reconstruction from a Single
Image. In IEEE conference on Computer Vision and Pattern
Recognition, 605–613.
Gojcic, Z.; Litany, O.; Wieser, A.; Guibas, L. J.; and Birdal,
T. 2021. Weakly Supervised Learning of Rigid 3D Scene
Flow. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5692–5703.
Gu, X.; Wang, Y.; Wu, C.; Lee, Y. J.; and Wang, P. 2019.
HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet
for Scene Flow Estimation on Large-scale Point Clouds. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, 3254–3263.
Hasanbelliu, E.; Giraldo, L. S.; and Prı́ncipe, J. C. 2011. A
Robust Point Matching Algorithm for Non-Rigid Registra-
tion using the Cauchy-Schwarz Divergence. In IEEE In-
ternational Workshop on Machine Learning for Signal Pro-
cessing, 1–6. IEEE.
He, P.; Emami, P.; Ranka, S.; and Rangarajan, A. 2021.
Learning Scene Dynamics from Point Cloud Sequences.
arXiv preprint arXiv:2111.08755.
Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.;
and Brox, T. 2017. FlowNet 2.0: Evolution of Optical Flow
Estimation with Deep Networks. In IEEE conference on
Computer Vision and Pattern Recognition, 2462–2470.
Jaimez, M.; Souiai, M.; Stückler, J.; Gonzalez-Jimenez, J.;
and Cremers, D. 2015. Motion Cooperation: Smooth Piece-
wise Rigid Scene Flow from RGB-D Images. In Interna-
tional Conference on 3D Vision, 64–72. IEEE.
Jenssen, R.; Erdogmus, D.; Hild, K. E.; Principe, J. C.; and
Eltoft, T. 2005. Optimizing the Cauchy-Schwarz PDF Dis-
tance for Information Theoretic, Non-Parametric Clustering.
In International Workshop on Energy Minimization Methods
in Computer Vision and Pattern Recognition, 34–45.
Jenssen, R.; Principe, J. C.; Erdogmus, D.; and Eltoft, T.
2006. The Cauchy–Schwarz divergence and Parzen win-
dowing: Connections to Graph Theory and Mercer Kernels.
Journal of the Franklin Institute, 343(6): 614–629.
Jian, B.; and Vemuri, B. C. 2010. Robust Point Set Regis-
tration using Gaussian Mixture Models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(8): 1633–
1645.
Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization. arXiv preprint arXiv:1412.6980.
Kittenplon, Y.; Eldar, Y. C.; and Raviv, D. 2021. Flow-
Step3D: Model Unrolling for Self-Supervised Scene Flow
Estimation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 4114–4123.
Kullback, S.; and Leibler, R. A. 1951. On Information and
Sufficiency. The Annals of Mathematical Statistics, 22(1):
79–86.
Li, R.; Lin, G.; and Xie, L. 2021. Self-Point-Flow: Self-
Supervised Scene Flow Estimation from Point Clouds with
Optimal Transport and Random Walk. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 15577–
15586.
Liu, X.; Qi, C. R.; and Guibas, L. J. 2019. FlowNet3D:
Learning Scene Flow in 3D Point Clouds. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 529–537.
Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers, D.;
Dosovitskiy, A.; and Brox, T. 2016. A Large Dataset to
Train Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation. In IEEE conference on Com-
puter Vision and Pattern Recognition, 4040–4048.
Menze, M.; and Geiger, A. 2015. Object Scene Flow for
Autonomous Vehicles. In IEEE Conference on Computer
Vision and Pattern Recognition, 3061–3070.

Menze, M.; Heipke, C.; and Geiger, A. 2015. Joint 3D Es-
timation of Vehicles and Scene Flow. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2: 427.
Mittal, H.; Okorn, B.; and Held, D. 2020. Just Go with
the Flow: Self-Supervised Scene Flow Estimation. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 11177–11185.
Moon, T. K. 1996. The Expectation-Maximization Algo-
rithm. IEEE Signal Processing Magazine, 13(6): 47–60.
Myronenko, A.; and Song, X. 2010. Point Set Registration:
Coherent Point Drift. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 32(12): 2262–2275.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; et al. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems, 8026–8037.
Petersen, K. B.; Pedersen, M. S.; et al. 2008. The Matrix
Cookbook. Technical University of Denmark, 7(15): 510.
Peyré, G.; Cuturi, M.; et al. 2019. Computational Optimal
Transport: With Applications to Data Science. Foundations
and Trends in Machine Learning, 11(5-6): 355–607.
Pontes, J. K.; Hays, J.; and Lucey, S. 2020. Scene Flow
from Point Clouds with or without Learning. arXiv preprint
arXiv:2011.00320.
Principe, J. C. 2010. Information Theoretic Learning:
Renyi’s Entropy and Kernel Perspectives. Springer Science
& Business Media.
Puy, G.; Boulch, A.; and Marlet, R. 2020. FLOT: Scene
Flow on Point Clouds Guided by Optimal Transport. In Eu-
ropean Conference on Computer Vision, 527–544. Springer.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Point-
Net: Deep Learning on Point Sets for 3D Classification and
Segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition, 652–660.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In Advances in Neural Information Process-
ing Systems, 5099–5108.
Rockafellar, R. T.; and Wets, R. J.-B. 2009. Variational
analysis, volume 317. Springer Science & Business Media.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In International Conference on Medical image comput-
ing and computer-assisted intervention, 234–241. Springer.
Roy, A. S.; Gopinath, A.; and Rangarajan, A. 2007. De-
formable Density Matching for 3D Non-Rigid Registration
of Shapes. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, 942–949.
Rubner, Y.; Tomasi, C.; and Guibas, L. J. 2000. The Earth
Mover’s Distance as a Metric for Image Retrieval. Interna-
tional Journal of Computer Vision, 40(2): 99–121.
Scott, D. W. 2015. Multivariate Density Estimation: Theory,
Practice, and Visualization. John Wiley & Sons.

Silverman, B. W. 2018. Density Estimation for Statistics and
Data Analysis. Routledge.
Steele, J. M. 2004. The Cauchy-Schwarz Master Class: An
Introduction to the Art of Mathematical Inequalities. Cam-
bridge University Press.
Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018. PWC-
Net: CNNs for Optical Flow using Pyramid, Warping, and
Cost Volume. In IEEE Conference on Computer Vision and
Pattern Recognition, 8934–8943.
Teed, Z.; and Deng, J. 2020. RAFT: Recurrent All-Pairs
Field Transforms for Optical Flow. In European Conference
on Computer Vision, 402–419. Springer.
Teed, Z.; and Deng, J. 2021. RAFT-3D: Scene Flow us-
ing Rigid-Motion Embeddings. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 8375–8384.
Tishchenko, I.; Lombardi, S.; Oswald, M. R.; and Pollefeys,
M. 2020. Self-Supervised Learning of Non-Rigid Residual
Flow and Ego-Motion. In International Conference on 3D
Vision, 150–159.
Tsin, Y.; and Kanade, T. 2004. A Correlation-Based Ap-
proach to Robust Point Set Registration. In European con-
ference on Computer Vision, 558–569.
Vedula, S.; Baker, S.; Rander, P.; Collins, R.; and Kanade,
T. 1999. Three-Dimensional Scene Flow. In IEEE Interna-
tional Conference on Computer Vision, 722–729.
Wang, Y.; and Solomon, J. M. 2019. Deep Closest Point:
Learning Representations for Point Cloud Registration. In
IEEE/CVF International Conference on Computer Vision,
3523–3532.
Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic Graph CNN for Learn-
ing on Point Clouds. ACM Transactions on Graphics.
Wei, Y.; Wang, Z.; Rao, Y.; Lu, J.; and Zhou, J. 2021. PV-
RAFT: Point-Voxel Correlation Fields for Scene Flow Esti-
mation of Point Clouds. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 6954–6963.
Wu, W.; Wang, Z. Y.; Li, Z.; Liu, W.; and Fuxin, L. 2020.
PointPWC-Net: Cost Volume on Point Clouds for (Self-) Su-
pervised Scene Flow Estimation. In European Conference
on Computer Vision, 88–107. Springer.
Yew, Z. J.; and Lee, G. H. 2020. RPM-Net: Robust Point
Matching using Learned Features. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 11824–11833.
Yuan, W.; Eckart, B.; Kim, K.; Jampani, V.; Fox, D.; and
Kautz, J. 2020. DeepGMR: Learning Latent Gaussian Mix-
ture Models for Registration. In European Conference on
Computer Vision, 733–750. Springer.
Zhou, Q.-Y.; Park, J.; and Koltun, V. 2016. Fast Global Reg-
istration. In European Conference on Computer Vision, 766–
782. Springer.
Zuanazzi, V.; van Vugt, J.; Booij, O.; and Mettes, P. 2020.
Adversarial Self-Supervised Scene Flow Estimation. In
2020 International Conference on 3D Vision, 1049–1058.
IEEE.

Appendix

Implementation Details
Product of two univariate Gaussian PDFs

Given the Gaussian PDF N(𝑥 |𝜇, 𝜎2) = 1√
2𝜋𝜎2 𝑒

− (𝑥−𝜇)2
2𝜎2 , the

product of two univariate Gaussian PDFs is

N(𝑥 |𝜇1, 𝜎
2
1)N (𝑥 |𝜇2, 𝜎

2
2) =

1
2𝜋𝜎1𝜎2

𝑒
−

(
(𝑥−𝜇1)2

2𝜎2
1

+ (𝑥−𝜇2)2

2𝜎2
2

)
(16)

Let’s examine the term in the exponent

𝜁 =
(𝑥 − 𝜇1)2

2𝜎2
1

+ (𝑥 − 𝜇2)2

2𝜎2
2

=
(𝜎2

1 + 𝜎2
2)𝑥

2 − 2(𝜇1𝜎
2
2 + 𝜇2𝜎

2
1)𝑥 + 𝜇

2
1𝜎

2
2 + 𝜇2

2𝜎
2
1

2𝜎2
1𝜎

2
2

=

𝑥2 − 2 𝜇1𝜎
2
2+𝜇2𝜎

2
1

𝜎2
1+𝜎

2
2
𝑥 + 𝜇2

1𝜎
2
2+𝜇

2
2𝜎

2
1

𝜎2
1+𝜎

2
2

2 𝜎2
1 𝜎

2
2

𝜎2
1+𝜎

2
2

(17)

Let’s define

𝜇12 =
𝜇1𝜎

2
2 + 𝜇2𝜎

2
1

𝜎2
1 + 𝜎2

2
(18)

and

𝜎2
12 =

𝜎2
1𝜎

2
2

𝜎2
1 + 𝜎2

2
, (19)

we can then rewrite 𝜁 as:

𝜁 =

𝑥2 − 2 𝜇1𝜎
2
2+𝜇2𝜎

2
1

𝜎2
1+𝜎

2
2
𝑥 + 𝜇2

1𝜎
2
2+𝜇

2
2𝜎

2
1

𝜎2
1+𝜎

2
2

2 𝜎2
1 𝜎

2
2

𝜎2
1+𝜎

2
2

=

𝑥2 − 2𝜇12𝑥 +
𝜇2

1𝜎
2
2+𝜇

2
2𝜎

2
1

𝜎2
1+𝜎

2
2

2𝜎2
12

=

𝑥2 − 2𝜇12𝑥 + 𝜇2
12 +

(
𝜇2

1𝜎
2
2+𝜇

2
2𝜎

2
1

𝜎2
1+𝜎

2
2

− 𝜇2
12

)
2𝜎2

12

=
(𝑥 − 𝜇12)2

2𝜎2
12

+

(
𝜇2

1𝜎
2
2+𝜇

2
2𝜎

2
1

𝜎2
1+𝜎

2
2

− 𝜇2
12

)
2𝜎2

12

=
(𝑥 − 𝜇12)2

2𝜎2
12

+

(
𝜇2

1𝜎
2
2+𝜇

2
2𝜎

2
1

𝜎2
1+𝜎

2
2

− 𝜇2
12

)
2𝜎2

12

=
(𝑥 − 𝜇12)2

2𝜎2
12

+ (𝜇1 − 𝜇2)2

2(𝜎2
1 + 𝜎2

2)

(20)

Substituting back into Equation 16 gives

N(𝑥 |𝜇1, 𝜎
2
1)N (𝑥 |𝜇2, 𝜎

2
2) =

1
2𝜋𝜎1𝜎2

𝑒
−

(
(𝑥−𝜇1)2

2𝜎2
1

+ (𝑥−𝜇2)2

2𝜎2
2

)

=
1

2𝜋𝜎1𝜎2
𝑒
− (𝑥−𝜇12)2

2𝜎2
12 𝑒

− (𝜇1−𝜇2)2

2(𝜎2
1+𝜎

2
2)

(21)

Note that 𝜎1𝜎2 =

√︃
𝜎2

12 ∗ (𝜎
2
1 + 𝜎2

2) based on Equation 19.
Therefore, we can further write Equation 21 as

1√︃
2𝜋(𝜎2

1 + 𝜎2
2)
𝑒
− (𝜇1−𝜇2)2

2(𝜎2
1+𝜎

2
2) 1√︃

2𝜋𝜎2
12

𝑒
− (𝑥−𝜇12)2

2𝜎2
12 (22)

We now obtain

N(𝑥 |𝜇1, 𝜎
2
1)N (𝑥 |𝜇2, 𝜎

2
2) =

N
(
𝜇1; 𝜇2, 𝜎

2
1 + 𝜎2

2

)
N(𝑥 |𝜇12, 𝜎

2
12)

(23)

Product of two multivariate Gaussian PDFs
We now show the derivation of product of two multi-
variate Gaussian PDFs, Given two multivariate Gaussians
N(𝑥 |𝜇1,Σ1) and N(𝑥 |𝜇2,Σ2), their product is

N(𝑥 |𝜇1,Σ1)N (𝑥 |𝜇2,Σ2) ∝

exp
{
−1

2
[
(𝑥 − 𝜇1)𝑇 Σ−1

1 (𝑥 − 𝜇1) + (𝑥 − 𝜇2)𝑇 Σ−1
2 (𝑥 − 𝜇2)

]}
.

(24)

The exponent is then a sum of two quadratic forms. This can
be simplified.

(𝑥−𝜇1)𝑇 Σ−1
1 (𝑥 − 𝜇1) + (𝑥 − 𝜇2)𝑇 Σ−1

2 (𝑥 − 𝜇2)
= 𝑥𝑇 Σ−1

1 𝑥 + 𝑥
𝑇 Σ−1

2 𝑥 + 𝜇
𝑇
1 Σ

−1
1 𝜇1 + 𝜇𝑇2 Σ

−1
2 𝜇2

− 2𝜇𝑇1 Σ
−1
1 𝑥 − 2𝜇𝑇2 Σ

−1
2 𝑥

= 𝑥𝑇
(
Σ−1

1 + Σ−1
2

)
𝑥 − 2

(
Σ−1

1 𝜇1 + Σ−1
2 𝜇2

)𝑇
𝑥

+ 𝜇𝑇1 Σ
−1
1 𝜇1 + 𝜇𝑇2 Σ

−1
2 𝜇2.

(25)

Let’s define 𝜇 =
(
Σ−1

1 + Σ−1
2
)−1 (

Σ−1
1 𝜇1 + Σ−1

2 𝜇2
)

and com-
plete squares, we then get

(𝑥 − 𝜇1)𝑇 Σ−1
1 (𝑥 − 𝜇1) + (𝑥 − 𝜇2)𝑇 Σ−1

2 (𝑥 − 𝜇2)

= (𝑥 − 𝜇)𝑇
(
Σ−1

1 + Σ−1
2

)−1
(𝑥 − 𝜇)

− 𝐶 + 𝜇𝑇1 Σ
−1
1 𝜇1 + 𝜇𝑇2 Σ

−1
2 𝜇2,

(26)

where

𝐶 ≡
(
Σ−1

1 𝜇1 + Σ−1
2 𝜇2

)𝑇 (
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 𝜇1 + Σ−1
2 𝜇2

)
.

(27)

Expanding 𝐶, we get

𝐶 =𝜇𝑇1 Σ
−1
1

(
Σ−1

1 + Σ−1
2

)−1
Σ−1

1 𝜇1

+𝜇𝑇2 Σ
−1
2

(
Σ−1

1 + Σ−1
2

)−1
Σ−1

2 𝜇2

+2𝜇𝑇2 Σ
−1
2

(
Σ−1

1 + Σ−1
2

)−1
Σ−1

1 𝜇1.

(28)

Using the Woodbury formula (𝐴−1 + 𝐵−1)−1 = 𝐴 − 𝐴(𝐴 +
𝐵)−1𝐴, i.e., let 𝐴 = Σ−1

1 and 𝐵 = Σ−1
2 , we get

𝐶 = 𝜇𝑇1
[
Σ−1

1 − (Σ1 + Σ2)−1] 𝜇1

+ 𝜇𝑇2
[
Σ−1

2 − (Σ1 + Σ2)−1] 𝜇2

+ 2𝜇𝑇2 (Σ1 + Σ2)−1𝜇1.

(29)

Substituting this in (26), we get

𝜉 = (𝑥 − 𝜇1)𝑇 Σ−1
1 (𝑥 − 𝜇1) + (𝑥 − 𝜇2)𝑇 Σ−1

2 (𝑥 − 𝜇2)

= (𝑥 − 𝜇)𝑇
(
Σ−1

1 + Σ−1
2

)−1
(𝑥 − 𝜇)

+ (𝜇1 − 𝜇2)𝑇 (Σ1 + Σ2)−1 (𝜇1 − 𝜇2) .

(30)

Therefore the product of Gaussians can be written as

N(𝑥 |𝜇1,Σ1)N (𝑥 |𝜇2,Σ2)

=
1√︁

| (2𝜋)Σ1 | | (2𝜋)Σ2 |
exp

{
−1

2
𝜉

}
=

√︃��(Σ−1
1 + Σ−1

2
) ��√︃

| (2𝜋)Σ1 | | (2𝜋)Σ2 |
�� (Σ−1

1 + Σ−1
2
) �� exp

{
−1

2
𝜉

}
.

(31)

We now simplify the denominator. Since |𝐴𝐵| =

|𝐵𝐴| = |𝐴| |𝐵 | we have |Σ1 | |Σ2 |
�� (Σ−1

1 + Σ−1
2
) �� =��Σ1

(
Σ−1

1 + Σ−1
2
)
Σ2

�� = | (Σ1 + Σ2) |. Therefore, after defining

Σ ≡
(
Σ−1

1 + Σ−1
2
)−1, we have

N(𝑥 |𝜇1,Σ1)N (𝑥 |𝜇2,Σ2)

=
1√︃

| (2𝜋) (Σ1 + Σ2) |
��2𝜋Σ−1

�� exp
{
−1

2
𝜉

}
= N(𝑥 |𝜇,Σ)N (𝜇1 |𝜇2,Σ1 + Σ2).

(32)

Equation 5 in the main paper is the multivariate version of
Equation 32. We then obtain the product of two multivariate
Gaussian PDFs as

N(x|µi,𝚺i)N (x|µj , 𝚪j) =
N(µi |µj ,𝚺i + 𝚪j)N (𝑥 |µ𝒊 𝒋 ,𝚺𝒊 𝒋)

(33)

where
µ𝒊 𝒋 = 𝚺𝒊 𝒋 (𝚺−1

i µ𝒊 + 𝚪−1
j µ𝒋) (34)

and
𝚺𝒊 𝒋 = (𝚺−1

i + 𝚪−1
j)−1

. (35)

Closed-form Expression for the CS divergence
Inspired by the CS inequality, the CS divergence measure
(Jenssen et al. 2005) is defined as

𝐷𝐶𝑆 (𝑞, 𝑝) = − log
(∫

𝑞(𝑥)𝑝(𝑥)𝑑𝑥√︃∫
𝑞(𝑥)2𝑑𝑥

∫
𝑝(𝑥)2𝑑𝑥

)
= − log

∫
𝑞(𝑥)𝑝(𝑥)𝑑𝑥 + 0.5 log

∫
𝑞(𝑥)2𝑑𝑥

+ 0.5 log
∫

𝑝(𝑥)2𝑑𝑥

(36)

It defines a symmetric measure for any two PDFs 𝑞 and 𝑝

such that 0 ≤ 𝐷𝐶𝑆 < ∞ where the mimimum is obtained iff
𝑞(𝑥) = 𝑝(𝑥).

The CS divergence can be written in a closed-form ex-
pression for GMMs (Jenssen et al. 2006). Formally, for
a given point cloud x, we represent it as the PDF of a
general Gaussian mixture, which is defined as G(𝑥) =∑𝐾
𝑘=1 𝑤𝑘N(𝑥 |µk,𝚺k), where

N(𝑥 |µk,𝚺k) =
exp

[
− 1

2 (𝑥 − µk)𝑇 𝚺−1
k (𝑥 − µk)

]√︁
(2𝜋)𝑑 |𝚺k |

(37)

where 𝐾 is the number of Gaussian components. We denote
𝑤𝑘 , 𝜇𝑘 ,Σ𝑘 as the mixture coefficient, mean, and covariance
matrix of the 𝑘 𝑡ℎ component of G(𝑥). 𝑑 is the feature dimen-
sion of each point. In our case, 𝑑 = 3. |𝚺k | ≡ det𝚺k is the
determinant of 𝚺k, also known as the generalized variance.

Given the warped point cloud S𝑤 = S +D and the target
point cloud T , we represent S𝑤 and T as the GMM repre-
sentations G(S𝑤) and G(T):

G(S𝑤) =
𝑁∑︁
𝑖=1

𝜋𝑖N(𝑥 |csi ,𝚺i) (38)

and

G(T) =
𝑀∑︁
𝑗=1
𝜏𝑗N(𝑥 |ctj , Γ 𝑗) (39)

where we denote the sets of mixture coefficients for two
GMMs G(S𝑤) and G(T) as {𝜋𝑖}𝑁𝑖=1 and {𝜏𝑗 }𝑀𝑗=1 and their
covariance matrix sets as {Σ𝑖}𝑁𝑖=1 and {Γ𝑖}𝑀𝑗=1.

The CS divergence between G(S𝑤) and G(T) is defined
as

D𝐶𝑆 (G(S𝑤),G(T)) = − log
(∫

G(S𝑤)G(T)𝑑𝑥√︃∫
G(S𝑤)2𝑑𝑥

∫
G(T)2𝑑𝑥

)
= − log

∫
G(S𝑤)G(T)𝑑𝑥 + 0.5 log

∫
G(S𝑤)2𝑑𝑥

+ 0.5 log
∫

G(T)2𝑑𝑥
(40)

Using the Gaussian identity in Equation 33, we can write a

closed-form expression of log
∫
G(S𝑤)G(T)𝑑𝑥 as follows:

log
(∫ 𝑁∑︁

𝑖=1

𝑀∑︁
𝑗=1

𝜋𝑖𝜏𝑗N(𝑥 |csi ,𝚺i)N (𝑥 |ctj , Γ 𝑗)𝑑𝑥
)

= log
(𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜋𝑖𝜏𝑗

∫
N(𝑥 |csi ,𝚺i)N (𝑥 |ctj , Γ 𝑗)𝑑𝑥

)
= log

(𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜋𝑖𝜏𝑗

∫
N(csi |c

t
j ,𝚺i + 𝚪j)N (𝑥 |µ𝒊 𝒋 ,𝚺𝒊 𝒋)𝑑𝑥

)
= log

(𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜋𝑖𝜏𝑗N(csi |c
t
j ,𝚺i + 𝚪j)

∫
N(𝑥 |µ𝒊 𝒋 ,𝚺𝒊 𝒋)𝑑𝑥︸ ︷︷ ︸

=1

)

= log
(𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜋𝑖𝜏𝑗N(csi |c
t
j ,𝚺i + 𝚪j)

)
(41)

Applying the same trick to the second and third term of
Equation 40, we get

D𝐶𝑆 (G(S𝑤),G(T)) = − log
(𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜋𝑖𝜏𝑗N(csi |c
t
j ,𝚺i + 𝚪j)

)
+ 0.5 log

(𝑁∑︁
𝑖=1

𝑁∑︁
𝑖′=1

𝜋𝑖𝜋𝑖′N(csi |c
s
𝒊′ ,𝚺i + 𝚺𝒊′)

)
+ 0.5 log

(𝑀∑︁
𝑗=1

𝑀∑︁
𝑗′=1

𝜏𝑗𝜏𝑗′N(ctj |c
t
𝒋′ , 𝚪j + 𝚪 𝒋′)

)
.

(42)

Implementation of the CS Divergence Loss
The CS divergence loss can be implemented with a few lines
of code. To handle the numerical issue, we leverage the Log-
Sum-Exp trick as shown in Algorithm 1.

Run Time
We compare our method against state-of-the-art self-
supervised models including PointPWC-Net (Wu et al.
2020) and FlowStep3D (Kittenplon, Eldar, and Raviv 2021).
We use the official implementations released by the au-
thors and evaluate all models on a server equipped with
AMD EPYC ROME and NVIDIA A100 GPUs. PointPWC-
Net (Wu et al. 2020) contains roughly 7.7 million parameters
while requiring 0.058 seconds on average for one inference
step. FlowStep3D (Kittenplon, Eldar, and Raviv 2021) has a
lowest number of model parameters (0.689 million). How-
ever, FlowStep3D (Kittenplon, Eldar, and Raviv 2021) takes
a longer time (0.572 seconds) to process one point cloud
pair due to its multiple inference iterations. Our RSFNet has
approximately 7.8 million parameters and takes 0.083 sec-
onds on average for processing one point cloud pair while
generating accurate and robust predictions.

Network Architectures
Our model is built upon Pytorch (Paszke et al. 2019) and
MinkowskiEngine (Choy, Gwak, and Savarese 2019). The

Algorithm 1: The CS divergence implemented in PyTorch.
1 # est_flow. Predicted flow <-- B X N x 3
2 # source, target. point coordinates <-- B X N x 3

and B X M x 3
3 # sigma, gamma. Isotropic variances <-- scalar
4 # tau, nu. Mixture coefficients <-- scalar
5 def GMM(c_s, c_t, sigma, gamma, tau, nu):
6 p_ij = tau * nu
7 sigma_ij = sigma + gamma
8 # B X N x M x 3 <-- B X N X 1 x 3 - B X 1 X M X 3
9 diff_ij = (c_s.unsqueeze(2) - c_t.unsqueeze(1))

10 # B X N x M
11 diff_ij = (diff_ij**2).sum(-1).div(sigma_ij).mul

(-0.5) - 1.5*log(2*math.pi) - 1.5*math.log(
sigma_ij) + math.log(p_ij)

12 # the log_sum_exp trick
13 dist = torch.logsumexp((diff_ij).reshape(diff_ij.

shape[0], -1),dim=1).mean()
14 return dist
15
16 def cs_divergence_loss(source, target, est_flow,

sigma, gamma, tau, nu):
17 c_s = source + est_flow
18 c_t = target
19 st_dist = -1 * GMM(c_s, c_t, sigma, gamma, tau,

nu)
20 ss_dist = 0.5 * GMM(c_s, c_s, sigma, sigma, tau,

tau)
21 tt_dist = 0.5 * GMM(c_t, c_t, gamma, gamma, nu,

nu)
22 cs_divergence = ss_dist + st_dist + tt_dist
23 return cs_divergence

backbone architecture is depicted in Figure 5. We feed the
absolute point coordinates of the point cloud pairs into the
model. All the sparse convolution layers are followed by a
batch normalization layer and a ReLU activation function
in ResNet blocks. We obtain the output of 64-dimensional
pointwise latent features, which are further passed to the
scene flow estimation module.

Additional Evaluation Results
In this section, we provide additional evaluation results on
FT3D and KSF that were omitted from the main paper due
to the space constraint.

Additional Results on FT3D

We evaluate the fully supervised performance of the de-
signed backbone architecture trained with ground truth an-
notations on FT3D, which supplements the evaluation of Ta-
ble 3 in the Experiment Section. The results are summarized
in Table 5. As expected, our model achieves competitive re-
sults compared to existing fully supervised approaches.

Additional Results on KSF

We further apply the model trained on FT3D with full anno-
tations to the unseen KSF dataset, reflecting its performance
in a real-world environment. The model still performs com-
petitively without adding any refinement module adopted in
(Puy, Boulch, and Marlet 2020; Gojcic et al. 2021).

Sp
ar

se
 C

on
v

7x
7x

7,
 1

, 6
4,

BN

R
es

N
et

Bl
oc

k-
64

Sp
ar

se
 C

on
v

3x
3x

3,
 2

, 6
4,

BN

R
es

N
et

Bl
oc

k-
64

Sp
ar

se
 C

on
v

3x
3x

3,
 2

, 1
28

,
BN

R
es

N
et

Bl
oc

k-
12

8

Sp
ar

se
 C

on
v

3x
3x

3,
 2

, 1
28

,
BN

R
es

N
et

Bl
oc

k-
12

8

Sp
ar

se
 C

on
v

Tr
 3

x3
x3

, 2
,

12
8,

 B
N

R
es

N
et

Bl
oc

k-
12

8

Sp
ar

se
 C

on
v

Tr
 3

x3
x3

, 2
,

12
8,

 B
N

R
es

N
et

Bl
oc

k-
12

8

Sp
ar

se
 C

on
v

Tr
 3

x3
x3

, 2
,

12
8,

 B
N

R
es

N
et

Bl
oc

k-
12

8

Sp
ar

se
 C

on
v

Tr
 1

x1
x1

, 1
,

64
, B

N

Sp
ar

se
 C

on
v

1x
1x

1,
 1

, 6
4,

BN

Sp
ar

se
 C

on
v

3x
3x

3,
 1

, X
,

BN R
eL

U

Sp
ar

se
 C

on
v

3x
3x

3,
 1

, X
,

BN

R
eL

U

+

ResNetBlock - X

Figure 5: Network architecture of the scene flow network. Both sparse convolutional (Sparse Conv) and sparse transpose
convolutational (Sparse Conv Tr) layers are applied, where 3D kernel size, stride, output feature dimension, and normalization
functions are denoted, e.g., 3x3x3, 2, 64, BN. BN is the batch normalization. (best viewed on display)

Table 5: Additional evaluation results on FT3D. CS achieves
a better self-supervised performance over CD and EMD.

Method Sup. EPE3D[m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
FlowNet3D (2019) Full 0.114 0.412 0.771 0.602
HPLFlowNet (2019) Full 0.080 0.614 0.855 0.429
PointPWC-Net (2020) Full 0.059 0.738 0.928 0.342
FLOT (2020) Full 0.052 0.732 0.927 0.357
EgoFlow (2020) Full 0.069 0.670 0.879 0.404
R3DSF (2021) Full 0.052 0.746 0.936 0.361
PV-RAFT (2021) Full 0.046 0.817 0.957 0.292
FlowStep3D (2021) Full 0.046 0.816 0.961 0.217

Ours Full 0.052 0.746 0.932 0.361

ICP (rigid) (1992) Self 0.406 0.161 0.304 0.880
FGR (rigid) (2016) Self 0.402 0.129 0.346 0.876
CPD (non-rigid) (2010) Self 0.489 0.054 0.169 0.906
EgoFlow (2020) Self 0.170 0.253 0.550 0.805
PointPWC-Net (2020) Self 0.121 0.324 0.674 0.688
FlowStep3D (2021) Self 0.085 0.536 0.826 0.420

Ours (CD) Self 0.112 0.347 0.665 0.632
Ours (EMD) Self 0.121 0.332 0.617 0.637
Ours (CS) Self 0.109 0.365 0.671 0.612

Table 7: Comparisons between FLOT (Puy, Boulch, and
Marlet 2020) models trained with CD, EMD, and CS. We
evaluate all trained models on the KSF dataset. CS pro-
vides a robust scene flow prediction which is reflected by
its lower value on Outliers and higher values on Acc3DS
and Acc3DR. The resulting models outperform some repre-
sentative self-supervised approaches.

Method Sup. Training data EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
ICP(rigid) (1992) Self FT3D 0.518 0.067 0.167 0.871
FGR(rigid) (2016) Self FT3D 0.484 0.133 0.285 0.776
CPD (non-rigid) (2010) Self FT3D 0.414 0.206 0.400 0.715
EgoFlow (2020) Self FT3D 0.415 0.221 0.372 0.810

FLOT (2020) + CD (Ours) Self KITTI𝑟 0.416 0.205 0.397 0.687
FLOT (2020) + EMD (Ours) Self KITTI𝑟 0.358 0.282 0.484 0.616
FLOT (2020) + CS (Ours) Self KITTI𝑟 0.396 0.325 0.511 0.592

Comparison with CD and EMD with FT3D
We train models with CD, EMD, and CS on the FT3D
dataset (Table 5). FT3D is generated in a synthetic envi-

Table 6: Additional evaluation results on KSF.

Method Sup. EPE3D[m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
Flownet3D (2019) Full 0.177 0.374 0.668 0.527
HPLFlowNet (2019) Full 0.117 0.478 0.778 0.410
PointPWC-Net (2020) Full 0.069 0.728 0.888 0.265
FLOT (2020) Full 0.056 0.755 0.908 0.242
EgoFlow (2020) Full 0.103 0.488 0.822 0.394
R3DSF (2021) Full 0.042 0.849 0.959 0.208
PV-RAFT (2021) Full 0.056 0.823 0.937 0.216
FlowStep3D (2021) Full 0.055 0.756 0.935 0.353

Ours Full 0.078 0.770 0.891 0.268

ronment, containing less noisy points compared to the real-
world KITTI𝑟 . CS consistently outperforms CD and EMD,
drawing a similar conclusion of Table 1. For example, the
CD has about 2% absolute performance drop in Acc3DS and
Outliers compared to CS. More qualitative examples can be
found in Figure 6.

Comparison with CD and EMD in FLOT

We apply CS to the popular FLOT model (Puy, Boulch, and
Marlet 2020), which finds the soft correspondence between
points based on optimal transport (Peyré, Cuturi et al. 2019).
We didn’t use its refinement module as it hurts the perfor-
mance when conducting self-supervised learning. The re-
sults are summarized in Table 7.

Effects of Number of Input Points

We show the model’s performance change w.r.t. the number
of input points in Table 8. As expected, the performance of
all models grows consistently as we increase the number of
points. And CS outperforms CS and EMD under this setting.

CS (Ours)CDEMDInput

0.3
EPE3D[m]

0.0

Figure 6: Qualitative results of our method on FT3D. We clip the EPE3D[m] to the range between 0.0 m (white) and 0.3 (red).
It confirms that our method is better on handling outliers compared to EMD and CD.

Table 8: Model performance with different number of input
points. We evaluate all trained models on the KSF dataset.

Method Sup. Training data Sampling EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
CD (Ours) Self KITTI𝑟 1,024 0.507 0.084 0.227 0.862
EMD (Ours) Self KITTI𝑟 1,024 0.586 0.078 0.224 0.864
CS (Ours) Self KITTI𝑟 1,024 0.369 0.177 0.395 0.716

CD (Ours) Self KITTI𝑟 2,048 0.507 0.084 0.227 0.862
EMD (Ours) Self KITTI𝑟 2,048 0.299 0.231 0.486 0.658
CS (Ours) Self KITTI𝑟 2,048 0.184 0.419 0.673 0.492

CD (Ours) Self KITTI𝑟 4,096 0.286 0.314 0.525 0.624
EMD (Ours) Self KITTI𝑟 4,096 0.294 0.309 0.549 0.606
CS (Ours) Self KITTI𝑟 4,096 0.171 0.480 0.716 0.449

CD (Ours) Self KITTI𝑟 8,192 0.170 0.477 0.697 0.470
EMD (Ours) Self KITTI𝑟 8,192 0.192 0.426 0.666 0.503
CS (Ours) Self KITTI𝑟 8,192 0.105 0.633 0.832 0.338

	Introduction
	Related Work
	Distance Measures for Point Clouds
	End-to-End Scene Flow Estimation
	Point Set Registration

	Problem Definition
	Proposed Approach
	Mixture Models for Representing Point Clouds
	Recovering Motion from the Alignment of PDFs
	Model Implementation
	Training

	Experiments
	Datasets and Evaluation Metrics
	Implementation Details
	Comparison with CD and EMD
	Ablation Studies
	Evaluation on FlyingThings3D
	Evaluation on KITTI Scene Flow

	Conclusions
	Acknowledgements
	Appendix
	Implementation Details
	Product of two univariate Gaussian PDFs
	Closed-form Expression for the CS divergence
	Implementation of the CS Divergence Loss
	Run Time
	Network Architectures

	Additional Evaluation Results
	Additional Results on FT3D
	Additional Results on KSF
	Comparison with CD and EMD with FT3D
	Comparison with CD and EMD in FLOT
	Effects of Number of Input Points

