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Abstract—Most existing perception systems rely on sensory
data acquired from cameras, which perform poorly in low light
and adverse weather conditions. To resolve this limitation, we
have witnessed advanced LiDAR sensors become popular in per-
ception tasks in autonomous driving applications. Nevertheless,
their usage in traffic monitoring systems is less ubiquitous. We
identify two significant obstacles in cost-effectively and efficiently
developing such a LiDAR-based traffic monitoring system: (i)
public LiDAR datasets are insufficient for supporting perception
tasks in infrastructure systems, and (ii) 3D annotations on
LiDAR point clouds are time-consuming and expensive. To fill
this gap, we present an efficient semi-automated annotation tool
that automatically annotates LiDAR sequences with tracking
algorithms while offering a fully annotated infrastructure LiDAR
dataset—FLORIDA (Florida LiDAR-based Object Recognition
and Intelligent Data Annotation)—which will be made publicly
available. Our advanced annotation tool seamlessly integrates
multi-object tracking (MOT), single-object tracking (SOT), and
suitable trajectory post-processing techniques. Specifically, we
introduce a human-in-the-loop schema in which annotators
recursively fix and refine annotations imperfectly predicted by
our tool and incrementally add them to the training dataset to
obtain better SOT and MOT models. By repeating the process,
we significantly increase the overall annotation speed by 3 − 4
times and obtain better qualitative annotations than a state-
of-the-art annotation tool. The human annotation experiments
verify the effectiveness of our annotation tool. In addition, we
provide detailed statistics and object detection evaluation results
for our dataset in serving as a benchmark for perception tasks
at traffic intersections.

Index Terms—Point cloud annotation tool, Intelligent trans-
portation systems, LiDAR dataset, infrastructure, deep learning.

I. INTRODUCTION

Currently, 55 percent of the global population lives in urban
areas or cities, which is estimated to increase to 68 percent
by 2050. As the world continues to urbanize, we have seen
increased investment in building smart traffic infrastructure to
achieve the goals of Vision Zero—zero deaths and no serious
injuries on roads and streets. For example, the Infrastructure
Investment and Jobs Act passed in 2021 by the U.S. gov-
ernment established the new Safe Streets and Roads for All
(SS4A) program with an annual budget of one billion dollars
from 2022 to 2026.

Solutions aimed at Vision Zero goals can be broadly divided
into two categories: (i) onboard solutions [e.g., advanced driver
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Fig. 1: Overview of the semi-automated annotation pipeline.

assistance systems (ADAS) and autonomous vehicles] that rely
on onboard sensing units on vehicles and drones. etc. and (ii)
infrastructure solutions (e.g., traffic monitoring systems, traffic
lights, speed bumps, streetlamps) that deploy a variety of sen-
sors in transportation infrastructure. Most existing perception
systems begin with sensory data acquired from cameras as they
provide excellent image/video data streams at an affordable
price. However, these solutions suffer from performance drops
in low illumination or adverse weather conditions. Moreover,
the monocular camera lacks depth information forcing object
detection to be confined to 2D. Stereo cameras can obtain
depth information via view interpolation but fail to give
accurate depth at a distance. Considering the above limitations
of cameras, LiDAR—a 3D sensing technology—has received
increased attention, especially in creating next-generation in-
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frastructure. By capturing millions of points with precise 3D
distance measurements per second through emitting and re-
ceiving light pulses (in wavelengths roughly ranging from 900
to 1500nm), LiDAR can support long-range object detection
and, in principle, can perform well under various lighting and
weather conditions. Due to these characteristics, LiDAR has
been widely used in onboard solutions in autonomous driving
applications. However, LiDAR-based infrastructure solutions
for traffic monitoring systems are still in their infancy.

We identify several significant obstacles while exploring
LiDAR-based infrastructure solutions at traffic intersections.
To begin with, publicly available LiDAR datasets are, in the
main, insufficient for perception tasks in infrastructure sys-
tems. Most existing perception tasks in the LiDAR space have
relied on public datasets collected from autonomous vehicles
in their quest to develop deep learning models for onboard
solutions. Despite significant progress [1], these approaches
fail to analyze complex, crowded, and safety-critical scenarios,
such as at a busy intersection, due to a limited field of
view and heavy occlusion. For these and related reasons,
existing onboard solutions are inadequate for supporting the
detection of pedestrians, who are more likely to get injured
in a traffic accident: (i) popular autonomous driving datasets
such as Waymo [2], NuScenes [3], and KITTI [4] only provide
a limited set of pedestrians for training and evaluation of
pedestrian perception algorithms; (ii) pedestrians are small and
non-rigid with various poses, making it difficult for sensors to
capture; (iii) pedestrians tend to walk in groups, adjust their
speed and direction more frequently and unexpectedly (for a
safe interpersonal distance), which leads to complex pedestrian
behavior and often causing heavy sensor occlusion. On the
other hand, infrastructure solutions have an overhead view of
traffic and pedestrians with less occlusion. Perception systems
in this space offer the promise of a better understanding of
challenging and crowded traffic scenarios, leading to more
reliability in spotting safety threats.

A serious challenge for infrastructure LiDAR is that 3D
annotations of LiDAR point clouds are time-consuming and
expensive. In the course of our initial annotations of an
intersection LiDAR dataset, we discovered that annotating and
adjusting a single 3D Bounding Box (BBox) around an object
is challenging due to its seven degrees of freedom (DoF),
namely, the 3D location, 3D size, and heading orientation.
Although some annotation tools [5], [6] are equipped with
one-click auto-fitting functions, they fail to accurately annotate
under many circumstances, such as when the object is partially
occluded, or when the point cloud is sparse. As a result,
existing tools require significant effort in data annotation. For
example, as stated in a recent pedestrian dataset STCrowd [7],
it took 960 person-hours effort of 20 professional annotators
to annotate 219K bounding boxes in the point clouds.

To fill this gap, we present an efficient semi-automated
annotation tool that automatically annotates LiDAR sequences
with human-in-the-loop initialization and correction. In this
work, we construct a fully annotated infrastructure LiDAR
dataset that will be made publicly available. Our development
is motivated by several key observations. After annotating
an object, a common annotation strategy is to propagate

the bounding box of the target object to subsequent frames,
thereby eliminating the need to label each frame. The strat-
egy is particularly advantageous for 3D data collected at
traffic intersections because the size of an object remains
constant, e.g., a parked car, or only varies slightly, e.g.,
a walking pedestrian. Current annotation tools either track
objects using Kalman filter-based algorithms [5] or regress
the target’s movement between two consecutive frames using
registration algorithms [6]. The Kalman filter-based approach
fails to locate the object precisely and necessitates multiple
manual adjustment operations, thereby increasing annotation
time. Additionally, the registration algorithm is susceptible to
temporary occlusions and tends to lose track of an object
after a few frames. Therefore, we seek to use Single Ob-
ject Tracking (SOT)—a deep learning-based object tracking
algorithm—for annotation propagation. Given an object’s first-
frame annotation, our algorithm can track it robustly in the
subsequent frames while maintaining the flexibility of being
trained on autonomous driving LiDAR datasets or infrastruc-
ture LiDAR datasets. Through extensive experiments, we find
that it works well in practice. Furthermore, inspired by the
work [8], we incorporated a Multi-Object Tracking (MOT)
algorithm into our annotation tool. Unlike the SOT, which
focuses on independently annotating and refining each object
instance via labeling the first frame of each object and prop-
agating it to subsequent frames followed by refinements, the
MOT algorithm can automatically detect and track all object
instances of a scene in a single shot. Once it generates the
predicted annotation, human annotators may visually inspect
and adjust the results. In practice, initial annotations are
provided by a trained MOT model. If MOT fails to detect
objects, one can annotate its first appearance and utilize an
SOT model to propagate. Both SOT and MOT models may not
initially give desirable predictions for annotation. Our human-
in-the-loop schema allows us to fix and refine imperfectly
predicted annotations and improve upon them to recursively
obtain better annotations. We show through experiments that
the model prediction accuracy is consistently enhanced by
adding more qualitative annotations to the training set. As a
result, our tool significantly accelerates the overall annotation
speed. To summarize, we make the following contributions:

• We develop a semi-automated annotation tool that applies
SOT and MOT models while using a human-in-the-loop
concept.

• We obtain a large-scale fully-annotated infrastructure
LiDAR dataset containing a variety of traffic participants
and interesting scenarios.

• We provide baselines for 3D object detection, where
the 3D AP for vehicles and pedestrians are 90.66% and
87.44%, respectively.

• Human annotation experiments demonstrate that our pro-
posed annotation scheme and tool increase the annotation
speed of pedestrians and vehicles by approximately a
factor of three.

• We demonstrate the practical value of this approach and
suggest how downstream applications can take advantage
of the infrastructure dataset.
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TABLE I: Comparison of FLORIDA with other popular infrastructure lidar benchmarks.

Dataset With crowded
pedestrians

Include all traffic
participants

Release full dataset
with labels

Object detection
evaluation Annotation method

Ko-PER ✗ ✓ ✓ ✗ Not mentioned

PedX ✓ ✗ ✓ ✗
3D model fitting for auto 3D labeling from 2D
segmentation and joint location labels

IPS 300+ ✓ ✓ ✗ ✓ By Datatang Co. Ltd.

LUMPI ✓ ✓ ✗ ✗

1) Foreground segmentation using DBSCAN algorithm
2) Annotation propagation using Kalman Filter
3) 3D pose correction using ICP
4) Costly human refinement

FLORIDA (Ours) ✓ ✓ ✓ ✓

1) Auto labeling using MOT
2) Missing object annotation using SOT
3) Pedestrian Orientation auto-correction from
moving direction
4) Human refinement in batch mode

II. BACKGROUND

A. 3D Single Object Tracking on Point Clouds

3D single object tracking on point clouds is a relatively
new research area. In 2019, SC3D [9] introduced the 3D SOT
problem and implemented a Siamese tracker that encodes the
target and candidates into embeddings, followed by the cosine
similarity measure to determine the best-matching candidate.
In addition, it regularized the target embedding by imposing
a shape completion loss. P2B [10] argued that SC3D’s can-
didate generation is either time-consuming or performance-
degraded. It then proposed an end-to-end Siamese tracker.
Target and search areas are fed to a Pointnet backbone to
obtain seeds with features. Then, each seed is projected to a
potential target center using Deep Hough voting [11]. Finally,
P2B clusters the projected target centers and generates the
final proposals by choosing those with the highest targetness
scores. Multiple successive works [12]–[15] are built on top
of P2B with additional innovations w.r.t. feature extraction,
template and search area feature fusion, and detector heads.
BAT [12] proposed a BoxCloud representation that captures
the point-to-box relation between object points and their
BBoxes. In addition, BAT developed a box-aware feature
fusion module to aggregate the features of target points into
search area points. MLVSNet [13] finds that the Hough voting
in P2B generates very few vote centers for sparse objects
and then proposes multi-level Hough voting as a remedy
and a target-guided attention module for feature fusion. In
V2B [14], the authors proposed a new voxel-to-BEV detection
head. It regresses the target’s 3D location in BEV feature
maps. PTTR [15] tracks objects in a coarse-to-fine manner
with the help of transformers. It utilized self-attention for
template and search area features, respectively, followed by
cross-attention for feature fusion, and a generation of coarse
prediction builds upon those features. Another lightweight
Prediction Refinement Module generates the final predictions.
The trackers mentioned above all follow the Siamese paradigm
and are essentially doing appearance matching between the
target and search area. Recently, M2-track [16] proposed a
new paradigm, namely the motion-centric paradigm. First, it
predicts the relative target motion between two consecutive

frames. Then it refines the prediction by aggregating the two
point clouds with motion compensation to create a denser
point cloud. M2-track achieved state-of-the-art performance
on multiple benchmarks. In this paper, we adopt M2-track as
the SOT model in our annotation tool.

B. 3D Multi-Object Tracking on Point Clouds

The research community initially analyzed the MOT prob-
lem in 2D representations, where we track objects in a
sequence of images. For 2D MOT, the same objects across
frames are associated by appearance and motion cues. For
3D MOT in point clouds, appearance cues become less dis-
criminative because of the sparsity of point clouds and lack
of texture information. In contrast, motion cues become more
reliable because the scale of an object remains constant, and
there are no abrupt movements. Given these characteristics,
most of the 3D MOT work employs the tracking-by-detection
paradigm and focus on motion modeling for data association.
Due to the rapid development of autonomous driving, a
variety of LiDAR-based object detectors have been developed
and made available, including representative works such as
SECOND [17], PointPillars [18], PointRCNN [19], PartA2

Net [20], CenterNet3D [21], and PVRCNN [22]. For tracking,
AB3DMOT [23] proposed a baseline approach that adopts
the 3D Kalman Filter as the motion model and uses the
Hungarian algorithm as the matching strategy. Follow-up work
[24], [25] mainly improves upon its data association method
and life cycle management strategy. SimpleTrack [26] encap-
sulates multiple 3D MOT methods (following the tracking-
by-detection paradigm) into a unified framework with four
configurable modules, namely detection result pre-processing,
data association, motion modeling, and life cycle management.
Given its flexibility and simplicity, we employ SimpleTrack as
part of our annotation pipeline.

C. Smart Annotation Tools for Point Clouds

3D BAT [27] is one of the earliest open-sourced point
cloud annotation tools—a web-based application with multi-
model data. The annotations for point clouds are automatically
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projected to different camera views. It also supports interpo-
lation between keyframes to accelerate sequence annotation.
LATTE [5] further implemented sensor fusion, smart one-click
annotation, and integrated tracking into sequence annotation.
LATTE used a clustering algorithm to achieve the one-click
annotation to find all points for the target object, estimate the
2D bounding box (BBox), and convert to 3D BBox coordinates
based on camera-LIDAR calibration. In addition, LATTE
utilized the Kalman Filter algorithm for tracking objects.
SAnE [28] improves one-click annotation by employing a
denoising pointwise segmentation strategy that assigns a noise
penalty for all boundary locations to better separate nearby
objects. SAnE also proposed an improved tracking algorithm,
namely a guided tracking algorithm. It consists of 3 stages:
greedy search, backtracking, and refinement.

SUSTechPOINTS [6] is one of the best open-source point
cloud annotation tools to the best of our knowledge. It has a
handy interface for adjusting BBox in single frame or batch
mode. Moreover, it implements a collection of functions, such
as one-click annotation and annotation propagation. It employs
a heuristic registration algorithm that calculates the relative
geometric transformation between the target in consecutive
frames to propagate the current BBox to subsequent frames.
Unfortunately, the registration performance is imperfect, re-
quiring a certain amount of effort in label refinement and
correction. We built our work upon SUSTech POINTS with
an improved annotation propagation algorithm. In addition, we
extend its functions to include auto-labeling using an MOT
tracker, orientation adjustment, trajectory smoothing, etc.

D. Point Cloud Benchmark Datasets
Many point cloud benchmark datasets focus on autonomous

driving applications in which the LiDAR is mounted on
moving vehicles. For example, KITTI—a point cloud dataset
released in 2013 and now a pioneering vision benchmark
[4]—is widely used for evaluating perception tasks. Later,
more autonomous driving datasets appeared, comprising more
diverse scenes, larger sizes, and more fine-grained annotations.
Argoverse [29], Nuscenes [3], and the Waymo Open Dataset
[2] are some of the most well-known datasets.

Infrastructure-side point cloud benchmarks, on the other
hand, are scarce. To our knowledge, the first infrastructure
LiDAR dataset was released in 2014 and is referred to as the
Ko-PER Intersection dataset [30]. It deploys 14 SICK LD-
MRS 8-layer research laser scanners to a four-way intersection
in Aschaffenburg, Germany. Later in 2021, IPS300+ [31]
released a high-density intersection dataset. It installs two 80-
beam Robosense Ruby-Lite LiDAR scanners at the diagonal of
a 4-way intersection. The two LIDAR cameras are calibrated
and cover the entire intersection. However, only a total of 600-
frame annotations are made available. Recently, LUMPI [32]
proposed a multi-perspective intersection dataset in Hanover,
Germany. It deployed three cameras and 5 LiDARs to cover
the intersection with dense point clouds. And a total of 90K
point clouds have been released. However, their labels are
unavailable as of November 21, 2022.

Our proposed dataset is collected at a busy intersection
near the University of Florida campus, comprising crowded

vehicles, pedestrians, and a parking lot. We captured sequences
covering diverse traffic behaviors such as pedestrian jaywalk-
ing, near-misses, vehicles lining up on the crosswalk, causing
pedestrians to take detours, and people exiting vehicles while
waiting at a red light. We demonstrated through our FLORIDA
dataset that a single LiDAR can sufficiently capture most of
the intersection traffic, except for a 5-meter blind spot beneath
the LiDAR. And our semi-automated annotation algorithm
performs well under the LiDAR-only setting.

III. METHODOLOGY

This section introduces the collected dataset, detailed statis-
tics regarding performance and a qualitative comparison with
other infrastructure LiDAR datasets. Then, we present an
overview of the proposed semi-automated annotation scheme,
followed by an explanation of the utilized deep-learning-
based models. Finally, we discuss the pre- and post-processing
algorithms designed to further improve annotation speed.

A. The FLORIDA Dataset

1) Data collection: We collected the dataset at a busy
intersection—West University Avenue & Northwest 17th
Street, Gainesville, FL—near the campus of the University
of Florida. The LiDAR camera is mounted on a 5-meter post
at the intersection. We used a Velodyne VLP-32C LiDAR with
32 channels, a 200-meter range, +15° to −25° vertical field of
view (FOV), and 360° horizontal FOV. We manually selected
11 sequences, some of which included crowded pedestrians,
abnormal behaviors, or near-misses. Henceforth, we refer
to our dataset as FLORIDA—Florida LiDAR-based Object
Recognition and Intelligent Data Annotation.

2) Dataset statistics and characteristics: As shown in Ta-
ble II and Figure 2 (c), we first summarize the statistics for
all categories and display the orientation histogram of vehi-
cles and pedestrians, respectively. The orientation histogram
indicates that most vehicles move in a 45°/225° direction,
corresponding to West University Avenue. The 165° direction
comes from a parking lot where most vehicles park in parallel.
For pedestrians, most of them cross the streets in the zebra-
crossings, resulting in spikes in 45°, 225°, 135°, and 325°
directions. As it is difficult to determine the orientations of
pedestrians from the point cloud when they are waiting to cross
the intersection, we utilized a heuristic approach, which we
detail in Section III-E1. As depicted in Figure 3, the FLORIDA
dataset captures crowded pedestrians and vehicles and several
abnormal behaviors, which is beneficial for training and eval-
uating object detectors and trackers under challenging condi-
tions, such as scenes with crowds with numerous occlusions.

The comparisons with some of the popular infrastructure
LiDAR datasets are summarized in Table I. In brief, previous
datasets either did not release the full dataset labels or did not
report the evaluation performance, such as object detection.
To the best of our knowledge, FLORIDA is the first dataset
to include crowded pedestrians and diverse traffic participants
which will be fully released and can be openly evaluated
for object detection. In addition, we compared the annotation
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Fig. 2: We collect crowded pedestrian sequences from a LiDAR installed at a busy intersection — West University Avenue
& Northwest 17th Street, Gainesville, FL, near the campus of the University of Florida. (c) is the orientation histogram of
vehicles and pedestrians, and the count numbers in the images are measured in thousands.

TABLE II: The statistics of FLORIDA

Class Vehicle Pedestrian Cyclist Motorcycle Bus Truck

The total number of instances 143,941 80,220 999 17,397 4,170 2,640
The average number of instances per frame 21.81 12.15 0.15 2.64 0.63 0.40
The maximal number of instances per frame 38 34 2 7 3 3

approaches of all datasets. LUMPI is most comparable be-
cause they only annotate on LiDAR point clouds. Compared
to LUMPI, our annotation approach employs trained deep-
learning models that improve the accuracy and robustness of
auto-labeling and provide more assistance to human annotators
for post-correction and refinement.

B. Overview of the Semi-automated Annotation Algorithm

A common strategy for annotating a new dataset is to an-
notate object instances one by one, from their first appearance
to their exit from the scene. Typically, an annotation tool
can leverage a tracking algorithm to track and annotate an
object across multiple frames. In a similar vein, we propose
to exploit a state-of-the-art deep-learning SOT tracker [16]
to propagate annotations: we begin by providing the initial
annotation of an object with a proper one-click function and
then propagating the annotation across subsequent frames
(e.g., up to 100 frames) using the SOT tracker. Of course,
the auto-generated BBoxes might be imperfect; therefore,
manual annotator refinement is necessary. Following [6], we
leverage the function of batch-mode editing in which adjusting
keyframes’ annotations could trigger the interpolation of inter-
mediate frames, which is proven to reduce refinement effort.

We further automate the annotation using a trained MOT,
which generates tracklets for all objects. In contrast to SOT,
MOT does not require first-frame annotation for each object.
The MOT is iteratively trained. In the beginning, it is trained
on one fully annotated sequence. As more sequences are
annotated, its training set is expanded such that the detection
and tracking accuracy improves accordingly. Nevertheless,

the MOT algorithm will still miss some objects or provide
imprecise annotations. The annotator will then check each
tracklet and make necessary adjustments. Additionally, the
SOT can be utilized as a remedy for objects missed by MOT.

The aforementioned annotation scheme is not limited to
static LiDAR settings; it can also be used to speed up the
annotation for onboard LiDAR datasets. Specific to the static
LiDAR setting, we developed a collection of pre- and post-
processing algorithms: ground height estimation, trajectory
smoothing, orientation post-processing, and static object BBox
averaging. We now describe these methods in detail.

C. Annotation Propagation by Single Object Tracking

Given a point cloud sequence and a BBox of an object in the
first frame as the input of a 3D SOT tracker, we aim to locate
the same object in a sequence of frames. Specifically, given a
point cloud sequence {P t}Tt=1 of frame length T and the 3D
BBox B1 ∈ R7 of one object, parameterized by its location in
3D coordinates, height, length, width, and heading direction,
at the first frame, a SOT tracker aims to find all 3D BBoxes
of the object in subsequent frames denoted as {Bt}Tt=2.

In our setting, the annotator provides the initial BBox anno-
tation, followed by the trained SOT tracker locating the object
frame-by-frame. Because objects move continuously in 3D,
their locations in two consecutive frames are close; therefore,
the search area can be K meters around the object’s last
location. K is a hyper-parameter determined by the object’s
velocity and the frame rate of the LiDAR data. Following
[16] and taking our static LiDAR setting into account, we
empirically set K to 2 for vehicles and 0.5 for pedestrians.
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Fig. 3: (a) A sample of a crowded scene. (b) A vehicle stopped at a pedestrian crosswalk. (c) People exiting a vehicle stopped
at a red light. (d) A cyclist and a pedestrian passing through a small gap between two cars.

To regress the position offset of the object between two
consecutive frames, we resort to the state-of-the-art 3D SOT
model—M2-Track [16]. It proposes a two-stage motion-
centric paradigm in which the motion transformation between
the same objects in two frames is first regressed, followed by
a refinement based on the merged point cloud in two frames.
In detail, M2-Track initially segments the target points in two
frames using a trained semantic segmentation network. Then a
motion vector M = (δx, δy, δz, δθ) is regressed by a motion
estimation network, where δx, δy, δz represent the location
offsets, and δθ represents the heading direction angle offset.
Adding the motion vector M to Bt−1 gives us a coarsely
predicted BBox B̂t. In the second stage, M2-Track refines B̂t

by regressing a small relative offset and producing the final
prediction Bt. Specifically, M2-Track aggregates the previous
frame point clouds P t−1 into the current point cloud P t,
compensating motion using the predicted M , resulting in a
denser point cloud P̃ t. Another regression network is applied
to P̃ t to produce the refined BBox Bt. We integrate the
SOT model into SUSTechPOINTS [6]—a popular open-source
annotation tool for point clouds—by replacing the original
auto-labeling function of SUSTechPOINTS with M2-Track,
resulting in a more robust function for handling occlusion
and sparsity and producing better accuracy for deformable
objects like pedestrians. We utilize the SOT model to select a
BBox to propagate to subsequent N frames, which returns
N BBox predictions and displays them on the annotation
tool. The parameter N can be changed by the annotator,
depending on the scenario. For example, more adjustments
from the annotator will be necessary when there is heavy
occlusion or in a crowded area. Therefore, a smaller value
for N is more practical in such a situation. By default, we

set it to a fixed number (i.e., N = 100) for typical cases.
The annotator can switch to batch processing mode, where
adjusting the keyframes will trigger interpolation for middle
frames, which is beneficial in speeding up the annotation.
Next, if the object is still visible after N frames, one can
adjust the last-frame annotation and continue propagating
the annotation to subsequent frames. To harmonize the SOT
algorithm and interpolation, we set one annotation out of every
ten as a keyframe such that the annotator can quickly refine
the annotation by adjusting keyframes alone most of the time.
Adjusting keyframes may be insufficient for turning vehicles,
as the orientation change is non-linear. In this case, we can
refine some annotations that are not keyframes. Once refined,
a non-keyframe will change to a keyframe and accordingly
trigger the interpolation.

D. Auto-annotation by Multi-Object Tracker

Given a point cloud sequence, the goal of MOT is to localize
and identify all objects in the sequence. Formally, given point
cloud sequence {P i}Tt=1, the MOT finds the BBoxes of all
objects {{Bt

j}Tt=1}N
t

j=1, where N t is the number of objects in
frame P t. Note that N t varies over frames, as objects may
enter or exit the scene at different times.

In our annotation scheme, an MOT model automatically
generates tracklets for all objects in the scene. To achieve this,
we follow a tracking-by-detection paradigm, where we detect
all objects via a detector frame-by-frame and then use the
tracker to associate boxes for the same object across frames.

We apply CenterPoint [21] for multi-object detection. It
detects objects as key points and then regresses their other
attributes, namely 3D location, 3D size, and 1D heading



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

orientation. CenterPoint consists of a standard 3D backbone, a
center heatmap head, and regression heads. The 3D backbone
extracts bird-eye-view (BEV) feature maps fed to the heads to
generate predictions. The head produces keypoint heatmaps,
where each heatmap peak corresponds to a predicted object
center. And another regression head regresses other properties
for predicted key points, such as BBox sizes and orientations.
We followed OpenPCDet’s CenterPoint implementation. The
readers can find more details about model architecture, training
strategy, and model implementation in CenterPoint [21].

Given predicted boxes in each frame, the next stage is asso-
ciating the BBox of the same object across frames, producing
tracklets of objects. To this end, we adopted SimpleTrack [26],
a top-performing multi-object tracking approach. Following
the ”tracking-by-detection” paradigm, SimpleTrack unifies the
3D MOT methods into a general framework. The framework
consists of four main components: (i) detection pre-processing,
(ii) BBox association across frames, (iii) object motion mod-
eling, and (iv) tracklet lifecycle management. Given multiple
options in each component, we adopted those matching our
dataset’s characteristics. The pre-processing module mainly
processes the raw detection predictions into a cleaner input
to the tracker. We follow SimpleTrack to apply a stricter non-
maximum suppression (NMS) to the raw detection predictions
to preserve recall while improving precision. It effectively
removes low-confidence detections that overlap with others
while preserving low-confidence detections likely from sparse
or occluded regions. For motion modeling, we adopted the
Kalman Filter, which predicts the location of an object with
increasing precision in the next frame. The Kalman Filter
performs exceptionally well on infrastructure datasets because
the LiDAR is stationary, resulting in longer tracklets and no
abrupt motions. The predicted location from the motion model
is then used as a proposal to associate with detections in the
next frame. Next, for BBoxes association across frames, we
view the problem as a bipartite matching problem and employ
the well-known Hungarian algorithm [33]. As objects enter
and exit the LiDAR’s field of view at different times, the life
cycle of tracklets needs to be carefully maintained. Following
SimpleTrack, we adopt the ”two-stage association” strategy.
The detection score threshold is higher in the first stage than
in the second. The first stage ensures tracking precision, while
the second stage extends the life of tracklets in occluded or
sparse regions, thereby reducing the number of ID switches.

We further post-process the generated tracks with heuristic
rules. First, we remove the tracklets that are too short because
they are likely to be false positives. Second, we filter the
tracklets whose speed is outside a reasonable range. For
instance, the typical walking speed of a pedestrian is less than
2 meters per second. Therefore, predicted pedestrian tracklets
with a higher average speed are more likely to be cyclists
or motorcycles. Finally, because our dataset contains many
parked cars, the bounding boxes of such tracklets vary slightly
from frame to frame. Therefore, we average them to generate
more accurate annotations.

There are cases where the MOT model makes mistakes.
For instance, we notice missing detection, incorrect detection,
track ID switches, reversed orientation, etc. We further develop

functions to assist annotators in quickly correcting errors. We
leverage the SOT model for missing detection to propagate
annotations for completion. For incorrect detection, annotators
could delete all annotations for a given ID. To handle track
ID switches, annotators could correct the ID where the switch
happens and synchronize the change to the following frames.
Lastly, they could correct the reversed orientation via a single
one-click or batch correction in batch mode.

E. Pre-processing and Post-processing Algorithms
1) Trajectory smoothing and orientation post-processing:

When annotating pedestrians, we find it particularly chal-
lenging to determine their orientation from a single frame.
For example, the point cloud on a pedestrian could be very
sparse and incomplete. Often, the annotator has to examine
the sequence surrounding the current frame to determine the
orientation of a pedestrian based on movement. Therefore,
we developed an orientation post-processing algorithm that
imitates the annotator’s behavior and significantly reduces
the pedestrian annotation time. Specifically, after annotating
a sequence, we first smooth the trajectory using a cubic
smoothing spline algorithm [34] and then set the orientation
at each timestamp as the pedestrian’s moving direction. It is
more tricky to set the orientation for stationary pedestrians.
Therefore, we adopt a heuristic strategy: if the pedestrian starts
moving later in the sequence, we set the orientation to match
the direction of movement; otherwise, the orientation remains
the same as the pedestrian’s initial orientation.

2) Ground height estimation: For small objects (i.e., pedes-
trians and cyclists) that are too close or too far from the
LiDAR’s center, there are only a few points on each object,
and it is ambiguous to determine the object’s z value, i.e.,
height. The ground height information is helpful in such
cases, as it allows us to better spot objects on the ground
using SOT and MOT algorithms. To obtain the ground height,
we manually segment the ground points using Point Cloud
Labeler [35]. Next, the ground points are interpolated into
grids using the LinearNDInterpolator from the python
SciPy library. However, interpolation does not work well for
distant regions with sparse data points. To cover these regions,
we estimate a ground plane given all segmented ground points
using the RANSAC algorithm [36]. The interpolation captures
subtle differences in ground height, such as the sidewalk being
slightly higher than the road. Additionally, the ground plane
captures the intersection’s general elevation or the LiDAR’s
slight tilt angle. Note that the ground height of an intersection
only needs to be estimated once.

IV. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate the FLORIDA dataset’s quality and the annotation
scheme’s usefulness. We evaluate the speed and accuracy of
our developed annotation tool in Section IV-A. Section IV-B
presents baseline detection results with a study of the trade-
off between annotation quantity and detection accuracy. Sec-
tion IV-C illustrates the improvement in annotation speed as
more data is annotated. Finally, Section IV-D gives an example
of a downstream application based on this work.
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Fig. 4: Annotation speed improvement as the MOT is trained
on more sequences. # training sequences = 0 means that we
only use SOT for annotation.

TABLE III: 3D object detection result on FLORIDA dataset.

Vehicle
IoU = 0.7

Pedestrian
IoU = 0.5

Motorcycle
IoU = 0.5

Bus
IoU = 0.7

3D AP (%) 90.66 87.44 82.32 91.99
BEV AP (%) 96.62 87.76 96.96 95.17

A. Annotator experiments

One straightforward way to evaluate the efficiency and ac-
curacy of an annotation tool is to conduct a human annotation
experiment. Therefore, we record the annotation time of four
annotators and evaluate their annotation quality. As annotators’
annotation speed may vary, we conduct the experiment with
two trained and two untrained annotators and separately report
their average annotation times.

We select a 200-frame LiDAR sequence with crowded
vehicles and pedestrians and ask annotators to label the
same sequence using two different annotation tools—
SUSTechPOINTS and ours. Ground truth labels are annotated
and double-checked by an experienced annotator. When anno-
tating the ground truth, we verify the annotation by observing
a longer sequence. The annotation efficiency is measured by
the average annotation time, and the annotation accuracy is
measured by the average F1 score. We consider an annotation
BBox to be accurate if the Intersection over Union (IoU) with
a ground truth BBox exceeds a threshold. As the tightness
of BBoxes differs between annotators, in the experiment, we
set the IoU threshold at 0.3. Table IV summarizes our tool’s
annotation efficiency and accuracy against SUSTechPOINTS.
It shows that our annotation tool nearly quadruples the speed
of annotation for both trained and untrained annotators. Mean-
while, our tool’s annotation quality is also better, especially
for pedestrians. The main reason is that the MOT algorithm
provides a template for the annotator, which largely improves
the recall for pedestrians. As shown in Figure 5, the annotator
using SUSTechPOINTS does not recognize the pedestrians
waiting to cross the street as human annotators recognize
objects primarily based on motion, whereas the pedestrians
in the blue box are stationary. On the other hand, our MOT
algorithm enables the annotator to recognize and accurately
annotate these pedestrians.

Fig. 5: Example of annotations from an untrained annotator
using our tool versus SUSTechPOINTS. The top one is an-
notated using our tool, while the bottom is annotated using
SUSTechPOINTS. The pedestrians within the blue box are
not recognized by the annotator.

B. 3D detection in the FLORIDA Dataset

In Table III, we show the 3D detection results for four cate-
gories on two 600-frame validation sequences. The validation
sequences are collected on different days, without any days
overlapping with the training sequences. We use the 3D Aver-
age Precision (3D AP) and Bird’s Eye View Average Precision
(BEV AP) as evaluation metrics, as defined by the KITTI
benchmark [4]. We employ lower Intersection over Union
(IoU) thresholds for smaller objects, such as Pedestrian and
Motorcycle, and higher IoU thresholds for larger objects, such
as Vehicle and Bus. Truck and Cyclist are annotated, but there
are insufficient instances for evaluation, and therefore they are
omitted from the table. We investigate the improvement of the
detector’s AP as more training data is gradually added. As
shown in Figure 6, training on 3 600-frame sequences already
gives a reasonably good result, whereas the AP improvement
from 3 to 6, and 6 to 9 are less significant. Therefore, given
the detection accuracy requirement for different downstream
tasks, one can vary the amount of annotation.

C. Annotation time reduction with training on more data

As shown in Figure 4, we record the annotation time for
Vehicle and Pedestrian in the FLORIDA dataset to demon-
strate the effectiveness of the human-in-the-loop concept. We
train a new model for every three 600-frame sequences and
calculate the average number of BBoxes per minute to measure
annotation speed. As object density and moving patterns vary
across different sequences (with the annotation of the crowded
scene being more challenging), the resulting data points are
fuzzy. However, we still observe a clear trend of increasing
annotation speed. For Vehicle, annotation propagation with
SOT and batch-mode interpolation already provide high an-
notation speed. For Pedestrian, MOT significantly increases
speed. Through the experiment, the MOT model trained on
three sequences increases the annotation speed from 27.05 to
72.13 BBoxes/min.
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TABLE IV: Comparative analysis of annotation speed and precision between
SUSTechPOINTS and ours. Our annotation tool speeds up the annotation
by more than 3× while improving the annotation quality, especially for
pedestrians.

SUSTechPOINTS Ours Our Improvement
Car Pedestrian Car Pedestrian Car Pedestrian

Avg time-trained (min) 80.5 119.5 21.0 31.0 ×3.8 ×3.9
Avg time-untrained (min) 152.0 185.0 34.5 47.5 ×4.4 ×3.9
Avg F-1 score-trained (%) 91.0 80.6 97.8 96.4 +6.8 +15.8

Avg F-1 score-untrained (%) 92.5 68.0 97.6 96.8 +5.1 +28.8
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Fig. 6: 3D AP varying the amount of training
data. Training on 3 sequences already produces
a decent result. The AP further improves when
training on more sequences.

Fig. 7: Application of our work on a web-based intersection
traffic monitoring system. The trajectories of different types
of traffic participants are shown in different colors. One can
inspect all the trajectories and analytic statistics of a given
time period.

D. Application to traffic monitoring systems

We demonstrate the effectiveness of the FLORIDA dataset
with our semi-automated annotation suite through a down-
stream use case. We integrate the predicted object trajectories
into a web-based visual analytics system, where one can
check all trajectories in a given time period, obtain count
statistics for traffic participants, observe abnormal behaviors,
etc. Compared with video sensors, LIDAR performs well
regardless of the lighting conditions, thereby enhancing the
safety of intersections.

V. CONCLUSION AND FUTURE DIRECTION

In this paper, we have developed a semi-automated an-
notation tool that applies SOT and MOT models integrated
with the human-in-the-loop schema for speeding up data
annotation of challenging intersection LiDAR datasets. We
verify its effectiveness via conducting human annotator ex-
periments and reporting qualitative and quantitative results
on object detection. Our developed tool supports the creation
of achievable and affordable LiDAR-based traffic monitoring
systems. Besides, we have introduced a fully-annotated infras-
tructure LiDAR perception dataset—FLORIDA—consisting of
diverse and crowded traffic participants and exciting traffic
scenarios, to facilitate research on infrastructure-based object
perception. In future work, we aim to enrich the dataset
with video cameras and reduce the annotation time given
the additional appearance information. We want to study how
transfer learning from our dataset can benefit training a model

on new scenes, leading to an even faster setup time for a new
intersection or road segment.
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