
����������
�������

Citation: He, P.; Wu, A.; Huang, X.;

Rangarajan, A.; Ranka, S. Machine

Learning-Based Highway Truck

Commodity Classification Using

Logo Data. Appl. Sci. 2022, 12, 2075.

https://doi.org/10.3390/app

12042075

Academic Editor: Lidia

Jackowska-Strumillo

Received: 7 January 2022

Accepted: 6 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Machine Learning-Based Highway Truck Commodity
Classification Using Logo Data

Pan He † , Aotian Wu † , Xiaohui Huang, Anand Rangarajan and Sanjay Ranka *

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL 32611, USA; pan.he@ufl.edu (P.H.); aotian.wu@ufl.edu (A.W.); xiaohuihuang@ufl.edu (X.H.);
anand@cise.ufl.edu (A.R.)
* Correspondence: ranka@cise.ufl.edu
† These authors contributed equally to this work.

Abstract: In this paper, we propose a novel approach to commodity classification from surveillance
videos by utilizing logo data on trucks. Broadly, most logos can be classified as predominantly
text or predominantly images. For the former, we leverage state-of-the-art deep-learning-based text
recognition algorithms on images. For the latter, we develop a two-stage image retrieval algorithm
consisting of a universal logo detection stage that outputs all potential logo positions, followed by
a logo recognition stage designed to incorporate advanced image representations. We develop an
integrated approach to combine predictions from both the text-based and image-based solutions,
which can help determine the commodity type that is potentially being hauled by trucks. We
evaluated these models on videos collected in collaboration with the state transportation entity
and achieved promising performance. This, along with prior work on trailer classification, can be
effectively used for automatically deriving commodity types for trucks moving on highways.

Keywords: freight analysis; scene text understanding; logo detection and recognition; commodity
classification; deep learning; intelligent transportation system

1. Introduction

Approximately 125 million households, nearly 7.7 million business establishments,
and 90,000 governmental units in the U.S. require efficient and reliable movement of
freight [1]. Freight transportation has become an indicator of economic growth and regional
development, which makes freight analysis an increasingly important area. The main
objective of freight analysis is to reduce freight transit time and transportation cost and
improve the reliability of freight movement. In addition, it is beneficial in mitigating traffic
congestion, better planning land use, and improving economic competitiveness [2].

Conventional freight data collection occurs through questionnaires filled manually by
carriers, shippers, or receivers regarding the commodity type, origin, and destination [2].
However, survey-based methods have several apparent drawbacks, such as low response
rates, unknown data reliability, and high time cost [3]. Although trucking companies are
likely to keep detailed records of their truck and commodity information, most of them are
unwilling to make these records public due to possible competition. As a consequence of the
above limitations, current freight data have limited reliability, completeness, and efficiency,
thereby reducing its applicability in downstream analysis and processing.

The video-based sensing technique has achieved consistent improvements in sup-
porting a cost-effective and accurate traffic system. This has led to increasingly popular
vision-based solutions in transportation applications aiming to improve efficiency and
reduce costs. However, it is known that applying these solutions to freight classification
is still in its infancy due to the challenges of the absence of a public dataset, real-time
requirements of identifying objects, and large variations in environmental conditions.

Among various transportation modes, truck-based transportation acts as the major
mode of commodity shipments in the U.S., carrying 62.7% of the total commodity tonnages
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and 61.9% of the commodity values, according to [4]. Truck-based freight transportation
is expected to grow in the next decade according to ATA’s freight forecast. In response to
this, the research community has developed various classification models for trucks and
trailers, relying on the input data collected from traffic sensors such as weigh-in-motion
(WIM), inductive loop detectors (ILD), and cameras [5–8]. However, the major limitation
is that they fail to reveal the carried cargo from the limited cues identified from trucks.

Large-scale road-based freight data analysis is of great need to alleviate problems of
traffic congestion, bottlenecks, and truck empty-mile wastage. In this paper, to the best of
our knowledge, we present a fundamental video processing approach for freight analysis
based on fine-grained visual information of truck images, e.g., logos and texts, collected
in real-world environments. Logos provide important cues in identifying commodity
types. Preliminary works [9,10] have shown effectiveness in detecting and recognizing
license plates and predefined sets of vehicle brand logos. However, they cannot meet the
requirement of freight analysis, where we are interested in reporting a broad range of
logos carried by trucks with potential extensions in the future. In other words, the desired
approach should be extensible, as it would be impractical to provide an exhaustive list of
company logos, and new logos will likely show up. Therefore, an approach to bridging the
gap between logo recognition and freight classification is desperately needed to supplement
the existing data sources.

Prior work has successfully inferred the commodity type based on the trailer types,
e.g., enclosed or tank, recognized from some truck images [6]. However, it fails to handle
the majority of trucks with enclosed trailers. Fortunately, we might still infer the commodity
types by leveraging those company logos potentially on truck bodies, which remains as the
non-trivial task of detecting and recognizing logos on trucks. The challenges mainly lie
in several factors such as uncontrolled illumination, occlusions, and background clutter.
To address all mentioned problems, we have made the following contributions (A prelimi-
nary version of this manuscript has been presented in a conference [7], where we tackle the
commodity classification by only utilizing text information of logos on trucks. In this paper,
we leverage both text and image content information and develop an integrated approach
to combine predictions from both text-based and image-based solutions):

• A coarse-to-fine universal logo detector that can estimate the locations of previously
unseen logos. Since the detector is class-agnostic and not limited to a certain set of
logos, it applies to a wide range of logos;

• An integrated approach to accurately link the detected logos to a company dataset
customized for traffic scenarios. It proposes to leverage both text and image informa-
tion from logos by a combination of texts generated from state-of-the-art solutions
and logo types identified from our proposed logo matching method. The developed
approach can be effectively extended to new logo classes and companies in which the
traffic agency is highly interested;

• A novel end-to-end road video processing system to provide real-time dynamic
commodity information by deploying sensors and edge devices in locations of interest.
This utilizes the NAICS (North American Industry Classification System) taxonomy
with searches aimed at commodity type inference based on the name of the company.

In addition, we have developed a new benchmark on commodity classification using
logos. To the best of our knowledge, this is the first attempt at doing so, which could be ben-
eficial in helping traffic engineers and researchers better evaluate their developed models.

The rest of the paper is organized as follows. Section 2 reviews previous studies that in-
clude relevant topics or techniques. Section 3 describes the overall commodity classification
pipeline and details of all developed logo detection and recognition approaches. Section 4
describes the experimental settings and results of the different developed approaches.
Finally, Section 5 concludes with an overall summary (while discussing limitations) and
presents opportunities for future work.
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2. Related Work
2.1. Logo Detection

The development of our universal logo detector benefits from advances in object
detection techniques in recent years. The goal of object detection is to locate and classify
certain categories of objects in given images and label the bounding box around the detected
regions with a confidence score. Object detection techniques have also been used in logo
detection. Several logo datasets have been released, such as FlickrLogos [11], LOGO-
Net [12], WebLogo-2M [13] and QMUL-OpenLogo [14], which have catalyzed quite a
few works on logo detection. Romberg et al. made use of quantized representations of
basic spatial structures detected in logo images [11]. Pan et al. utilized CNN features
for vehicle manufacturer brand recognition [15]. Su et al. trained one deep learning logo
detection model on a synthesized logo dataset which leveraged extensive labelling costs [16].
Montserrat et al. adopted a two-stage approach and cropped regions of interest from the
original image; this was followed by classification [17]. Our image-based recognition
approach adopted a two-stage approach for the sake of better generalization ability.

2.2. Deep Metric Learning

Since building an exhaustive database for logos appeared on trucks is impractical,
the extensibility logo recognition approach is of great importance. In other words, the ap-
proach should be able to quickly adapt to ever-growing logo classes. To address this
challenge, we adopt deep metric learning, which essentially ‘learns to compare’ image pairs
by shrinking intra-class distance while expanding inter-class distance. Several deep metric
learning approaches have been proposed and been applied in various applications, includ-
ing face identification [18], person re-identification [19,20], and image retrieval [21]. Metric
learning is known to have a stronger discriminative power since the inter-class distance is
directly maximized during training. Additionally, a learned metric can be generalized to
unseen testing classes using the discriminative attributes and pairwise distances extracted
in metric learning [22].

2.3. Content-Based Image Retrieval (CBIR)

CBIR seeks to solve the image retrieval problem using computer vision techniques.
Two innovative works significantly advanced the efficiency and accuracy of CBIR. The first
one is scale-invariant feature transform (SIFT) [23], which can robustly detect key points
under changes in scale, rotation, noise, and illumination. The second one is the bag-of-
visual-words (BoW) [24] model, which treats an image as a document and treats feature
representations as words. The BoW model gives a compact representation of the whole
image based on quantization of discriminative local features. In this paper, the BoW features
were extracted to match with the features of samples in the gallery set, the effectiveness of
which were measured through experiments.

3. Methodology

In this section, we describe the developed approach in detail. Logos, serving as the
outward expression of brands, often consist of letters or texts with large variations in
colors, font styles, and graphical figures. Logos can appear anywhere on truck bodies,
making it hard to leverage any prior knowledge of context and placement. It becomes
more challenging when moving to truck images of low resolutions, poor light and weather
conditions, and diverse view angles. The existing work on logo detection relies on large
datasets of sufficient fine-grained annotations on logos such as bounding boxes and logo
types, which, however, are often unavailable in real-world traffic scenarios. In this paper,
we have developed techniques following broad approaches for text-based and image-based
logos as follows:

• For text-based logos, we employ state-of-the-art solutions for text detection [25,26] and
recognition [27,28] to obtain raw text predictions with high accuracy. These predicted
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logo texts were matched to our built commodity database by comparing these texts
with recorded company names via simple string matching algorithms;

• To identify image-based logos that do not contain text information, we developed a
novel two-stage image-based approach: a universal logo detection stage that outputs
all potential logo positions within images, followed by a logo recognition stage de-
signed to incorporate various advanced image representations. If the universal logo
detector returned bounding boxes with high confidence scores, we cropped out the
corresponding image regions to obtain logo candidate images. Each logo image was
processed by our developed model to obtain the image features. These features were
matched with pre-computed image features stored in a database containing ground
truth logo images of interest. It is considered as a correct match if the matching score
surpasses a certain threshold; otherwise, we ignore this logo candidate;

• For an automated system, it is not known a prior whether a given truck contains
text- or image-based logos (or neither). We integrated the text-based approach and
image-based approach using the pipeline shown in Figure 1. This pipeline naturally
combines the advantages of both approaches in one integrated approach, and the later
experiments in Section 4 validate its effectiveness in improving the performance of
commodity classification.

Figure 1. The overall pipeline of commodity classification.

3.1. Text-Based Logo Detection and Recognition

We implemented state-of-the-art scene-text solutions, extending the previous research
work on EAST [25] for text detection and CRNN [28] for text recognition. The pipeline is
shown in Figure 2. It consists of the following steps:

1. For a truck image acquired from a roadside traffic camera, we generate the text
line/word map based on the features extracted from the multichannel FCN (fully
convolutional network) model in EAST, which helps identify text regions of interest;

2. To remove detected texts largely overlapping each other, we apply the standard
post-processing technique called NMS (non-maximum suppression), which results in
oriented bounding boxes to indicate text line/word locations;

3. We then crop out the image region within each oriented bounding box and feed it into
the CRNN model to translate the text image to a pure text string;

4. Finally, we match the predicted text string to a predefined logo class via additional
techniques for word prediction and string matching.

We have achieved a high recall and a competitive recognition accuracy following the
developed algorithms. The figures below show sample outputs. Though the texts might not
be perfectly predicted, e.g.,they might miss character prediction or wrongly recognize a few
characters, this could be suitably fixed via the spelling correction methods that are publicly
available, which we use to demonstrate in Section 4 that this text-based logo solution is
beneficial in improving the performance of the overall pipeline.

It is worth mentioning that text-based logo detection and recognition has its limitations
when solving the commodity classification. For those logos not containing any text or
being too complicated to be successfully identified as texts, the text-based solution is no
longer suitable. Instead, we have to seek a fundamentally different approach based on
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the image content, which leads us to the image-based approach incorporating various
advanced image representations for logo data described in the subsequent section.

Figure 2. The detection and recognition pipeline of the text-based solution.

3.2. Image-Based Logo Detection and Recognition

Our image-based logo approach is general and works for images (and complex-font
texts) using the following image-based approach: (i) a universal logo detector and (ii) a
feature-matching-based logo recognizer. Figure 3 shows the training and inference pipeline
of our staged approach.

Figure 3. The flow diagram of image-based solution on both training and inference.

3.2.1. Universal Logo Detector

State-of-the-art deep learning methods have been discussed in [29] to train and eval-
uate object detectors on localizing and identifying logos in a closed set of classes. Logo
detection is inherently a challenging task due to the presence of varying challenging factors
in occlusions, uncontrolled illumination, and background clutter. Under these conditions,
logo detectors tend to be susceptible to context changes. The authors presented a vivid
example of a detector trained to localize a logo that only appears on shoes in all the training
images. The detector fails to detect the same logo appearing on a coffee mug during the
model inference.

In real traffic scenarios, we expect to encounter a large number of previously unseen
logo classes. A logo detector trained with a fixed set of classes clearly cannot detect logos
that are not in the fixed set. This requires retraining the logo detector and annotating more
training data for new incoming logo classes, which makes it impractical because traffic
agencies are interested in detecting all kinds of logo data to further identify the carried
cargo within trucks. To overcome this limitation, a more promising direction is to develop a
logo detector without fine-grained labeled training data for new logo classes. As shown in
Figure 3, we designed the universal logo detector to localize any potential logos in contrast
to popular logo detectors that detect and identify a fixed set of logos. Our proposed model
alleviates the problem of collecting and annotating new training logo data for any future
logos to be detected.

One-stage universal logo detector. The training was based on a large number of data
images with bounding box annotations of logos. The model is designed to learn an abstract
representation of all kinds of logos in the training stage. Thus, it can work with arbitrary
logo data in the inference stage. In particular, the model is trained in a class-agnostic way:
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all logo regions belong to one single category (the logo category). We consider other regions
as the background category, thus creating a classifier in a binary fashion. By doing this, we
intentionally remove specific logo class information and force the model to learn a generic
representation of all logos. We refer to this model as the one-stage universal logo detector
(one-stage ULD). We adapt the implementation of the popular Faster R-CNN [30] with a
VGG16 backbone [31] for logo detection due to its simplicity and reasonably fast speed.
The training follows the original papers [30]. We did not explore other advanced backbones
(e.g., ResNet [32], DenseNet [33]) and detection approaches (e.g., MaskRCNN [34]) that
could further improve the detection performance, as it is not the focus of our paper. We
highlight the concept of universal logo detection for reporting the presence of any logo-like
regions in this paper.

Coarse-to-fine universal logo detector. It is worth noting that logos on trucks (which
are the vehicles of interest) usually appear on the truck bodies. To take advantage of this
prior information, we further propose a coarse-to-fine universal logo detector by roughly
estimating truck bounding boxes and conducting the universal logo detection only within
each bounding box. The process takes raw images and determines the presence of truck
objects within images by adopting the state-of-the-art detector called YOLO [35]. This
design significantly improved the localization precision as shown in the later experiment
section. After we obtained logo locations, we cropped all logo regions from the image and
forwarded them to the logo recognition model to infer the logo/brand classes. The bottom
part of Figure 4 shows sample outputs of our developed universal logo detector.

3.2.2. Reverse Image Search Logo Recognizer

In our preliminary experiments, we implemented a pipeline of logo detection and
recognition using the developed universal logo detector and a commercial reverse im-
age search. The reverse image search is a content-based image retrieval (CBIR) query
approach [36] in which we provide the system with a sample image (search query) to search
for related concepts about this image. We utilized the popular Google “Search by Image”,
which allows us to search for related images just by uploading an image or image URL.
It analyzes the submitted picture by constructing a mathematical model, comparing it to
a large number of images in Google databases, and returning similar images and their
annotations. The obtained results from this pipeline are not satisfactory as it usually reports
relatively random and noisy predictions. This pipeline is difficult to customize to the task
of freight analysis.

3.2.3. Feature-Matching Logo Recognizer

In this approach, we treated logo recognition as an image retrieval problem with
a few sample images for each class. We collected the gallery images from the Internet,
which included roughly 30 images per logo class. The gallery images are used as the
templates against which all logo predictions are matched. Two sets of features were
extracted to represent logo images, namely deep metric features and the BoW (Bag of
Visual Words) features. The deep metric features draw upon recent advances in deep
metric learning and have the capability of extracting high-level discriminative semantic
information for similarity measurements. The BoW features instead extract low-level image
information such as textures, corners, and edges for logo matching. The BoW features
are commonly used in image retrieval for research problems and industrial applications.
After extracting these two types of image feature representations, we combined them to
obtain the fused features.

Deep Metric Features. Inspired by [14], we trained a DCNN (deep convolutional neural
network) classifier on the QMUL-OpenLogo dataset and used the output features of the
second-to-last layer as the feature representation for a given logo image. We did not train
the classifier directly on the logo classes of interest, considering that new unseen logo
classes might be added. Instead, we aim at projecting logo images into a feature space such
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that logos from different classes are separable. Therefore, we seek to increase the inter-class
distances of logo features, bringing us to the popular deep metric learning (DML).

Figure 4. Sample outputs from the developed approaches.

The core concept of DML is to find a good representation of images with a good metric
for similarity measurement. To measure the similarity of two feature vectors, we simply
choose to use the common cosine similarity because it is bounded and invariant to feature
magnitude; its formula is shown as follows:

cos(xxxi, xxxj) =
xxxi · xxxj

‖|xxxi‖| · ‖|xxxj‖|
, (1)

where xxxi and xxxj are the feature vectors extracted from image i and j using the DML model.
If the score of cosine similarity is close to 1, it means these two feature vectors are likely to
come from the same logo class, otherwise not. Formally, pairs are called positive pairs if
they have the same label; otherwise, they are called negative pairs. To make logo features
separable, we prefer a trained model that assigns higher similarity to positive pairs and
lower similarity to negative pairs. We chose to use binomial deviance [37] as the loss
function with the formula:

L = ∑
i,j
[

1
Pi

∑
xxxi=xxxj

log[1 + eα(λ−Sij)]+

1
Ni

∑
xxxi 6=xxxj

log[1 + eβ(Sij−λ)] (2)

where Pi and Ni denote the count of positive pairs and negative pairs related to xxxi, respec-
tively. sij denotes the similarity of pair (xxxi, xxxj). α, β, and λ are hyperparameters, which
are chosen based on the best heuristic setting of [14]. The hyperparameters α and β were
set to be 40 and 0, respectively. The hyperparameter λ was set to be 0.5. The loss function
lays more emphasis on hard samples where positive pairs get low scores or negative pairs
get high scores, which enforces the model to find more discriminative features. The deep
metric learning model was implemented in PyTorch. We used the Inception network [38]
as the backbone with a global pooling layer and a fully connected layer added on top
of it. The network was trained in a pairwise way by gradient descent using the Adam
optimizer [39].
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Bag-of-words Features. Deep learning models are good at extracting high-level semantic
features, whereas, for logos, low-level features (such as textures, corners, and edges) can
be useful for recognition. To incorporate low-level features, we make use of the bag-of-
words (BoW) features, which are the most commonly used image representations in image
retrieval literature [40,41]. In the training stage, local features were extracted using the
scale-invariant feature transform (SIFT) descriptor [42]. This resulted in a large number of
features for each logo image. To further find a compact and fixed-length representation
of each image, feature quantization is required. This was achieved by visual codebook
learning, after which, each local feature can be assigned to a visual word in the codebook.
In this way, an image could be discriminatively represented by a histogram of these visual
words. The codebook was learned by clustering gallery local features using the k-means
algorithm and regarding the centers of clusters as visual words. In the inference stage, local
features were obtained by the same method following the training stage. For each feature,
the nearest visual word in a trained codebook was found and assigned to the corresponding
bin of histogram, which resulted in a fixed-length feature vector for each testing image.

Fused Features. Feature fusion has been proven to be effective when the classes of
features to be fused are heterogeneous, which can result in better performance than the best
single class of features. BoW features are essentially sparse histograms of low-level local
features, and DML features are high-level semantic features with large receptive fields. Both
of the extracted features are heterogeneous. Therefore, combining these two sets of features
tends to give a better result, as they are complementary to each other. Following this
intuition, we concatenated these two features and obtained 1,512-dimensional feature vec-
tors. We then used principal component analysis (PCA) for dimensionality reduction [43].
This resulted in 500-dimensional reduced feature vectors as the final representation. The
experiment results demonstrated the effectiveness of our fusion approach.

3.3. Integrated Logo Model

The main advantage of the text-based approach is its robustness when the logo is
mostly text. Though the model outputs incorrect or incomplete text predictions in some
challenging traffic scenarios, it works well in most cases. The errors from the partially
correct predictions can be corrected by finding the most similar company name using
approximate string matching algorithms. This approach does not work when the logo
consists essentially of non-text images.

The image-based approach has the potential to cover scenarios where the text infor-
mation is not available on truck bodies or the text-based approach fails to detect any texts
from trucks. Due to the high recall of the universal logo detector, we are likely to get a good
subset from all potential logos. However, the accuracy of this approach may not be high as
compared to a text-based approach when only logos that consist of text are present.

We now discuss potential approaches that combine both of these approaches. Let the
set of detected bounding boxes from the text-based approach be denoted as Btext = Bk

t ,
k = 1, 2, . . . , Ntext, where Ntext denotes the number of detections from the text-based model.
Each Bk

t is associated with two confidence scores, namely the detection score (denoted as
S0

t ), which measures how likely the detected region contains text, and the matching score
(denoted as S1

t ), which measures the similarity between the detected text with the matched
text in defined logo classes. Similarly, for the image-based approach, the set of detected
bounding boxes is denoted as Bimage = Bk

i , k = 1, 2, . . . , Nimage; each Bk
i is associated with

one matching score (denoted as Si), which measures the similarity between the detected
region and the matched one in the collected logo gallery. There are two possible approaches
for integrating these models:

1. Text-focused Approach: If both text-based and image-based models detect a logo in
the same location, (i.e., IoU(Bm

t , Bn
i ) > 0.3), we rely on the label from text-based model;

2. Combined Approach: We train a decision tree classifier with four output classes
indicating whether to use the text-based model’s result, the image-based model’s
result, neither or both (corresponding to 1, 2, 0, and 3). Ambiguity arises at the testing
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time when the image-based and text-based models give different predicted labels,
while the classifier outputs 3. We resolve the issue by preferring the text-based model’s
result in this case.

The later experimental evaluation shows that the first integration approach performs
slightly better on our collected testing dataset. This is potentially because it consists of
more text-based logos. The second approach has a better generalization ability since it can
automatically learn the parameters that can combine the outputs of the two approaches.
It can also be modified accordingly to adapt to a dataset with different text versus non-
text distributions. A user can choose either one of the two approaches, based on the
characteristics of the target dataset.

3.4. Commodity Classification with Logo Data

The linkage between logo recognition and the commodity classification is provided by
a commodity database we built. We utilized the North American Industry Classification
System (NAICS), a standard that classifies business establishments with the aim of collecting
and analyzing business-related statistical data. It is a comprehensive and well-structured
system that classifies economic activities hierarchically into levels of groups, such as sectors,
subsectors, and industry groups.

We built our commodity database by searching the NAICS code for each logo class and
stored its corresponding commodity description. Samples of NAICS code and commodity
description correspondences are shown in Table 1. With the database, the results from our
logo detection and recognition pipeline are linked to their commodity description. This
process completes our commodity classification solution. To the best of our knowledge,
the proposed pipeline is the first attempt in this direction.

Table 1. Samples of the NAICS code searching.

NAICS Code Description NAICS Code Description

311919 Other Snack Food Manufacturing 485119 Other Urban Transit Systems

337127 Institutional Furniture Manufacturing 488510 Freight Transportation Arrangement

424490 Other Grocery and Related Products
Merchant Wholesalers 484230 Specialized Freight (except Used Goods)

Trucking, Long-Distance

445110 Supermarkets and Other Grocery
(except Convenience) Stores 532120 Truck Utility Trailer and RV Rental and

Leasing

484121 General Freight Trucking
Long-Distance Truckload 551112 Offices of Other Holding Companies

4. Experiments

In this section, we provide the details and statistics of the collected dataset and
conduct extensive experiments to evaluate each module of our pipeline along with carefully
designed ablation studies.

4.1. Dataset Collection and Processing

Benchmark Datasets. We evaluated our logo detection and recognition approaches
on video frames captured by roadside cameras provided by the Florida Department of
Transportation (FDOT). Among all logos shown up in the recorded videos, We picked
26 logo classes based on frequency of occurrence, which contains several top carrier compa-
nies in the US (https://www.ttnews.com/top100/for-hire/2019 Accessed: 10 June 2020).
When choosing logo classes, we also diversify the classes by including styled text logos,
shape-based logos, and logos shown on different types of trailers. The chosen 26 classes do
not represent full coverage of all logo classes of interest but are illustrative to evaluate our
proposed approach. On one of the roadside videos, we annotated all logos that belong to
the 26 chosen logo classes as a dataset, referred to as the Annotated Logo Dataset (ALD).

https://www.ttnews.com/top100/for-hire/2019
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Each annotation consists of a bounding box around the target logo and the logo class.
This dataset consists of 4486 images and 5020 logos and is used to evaluate logo detection
and recognition performance. Detailed distributions of logo classes are shown in Table 2.
In addition, we collected a gallery logo dataset (GLD) from the internet. For each logo
class, we collected around 30 samples. This dataset is used in our feature-matching logo
recognizer. Utilizing both datasets, we are able to execute and evaluate the logo detection
and recognition pipeline for freight classification.

To provide a more in-depth evaluation and analysis of our logo recognition pipeline,
we divided the 26 logo classes into 3 groups (‘easy’, ‘medium’, and ‘difficult’) according
to the recognition difficulty. The detailed division can be found in Table 2 and samples
of each group can be found in Figure 5. Most of the ‘easy’ logos tend to have a relatively
clean background and high contrast between texts and the background. For example, we
can easily separate the Dollar General text of the dark color from its smooth and single
background with the yellow color. The model can extract discriminative features from
these logos. We define logos containing multiple text lines as the ‘medium’ logos, which
covers the typical cases such as Heartland Express and US Foods. The challenge mainly
comes from the text arrangement. In addition, we have to handle logos of different colors
and textures. The ‘difficult’ logos is very challenging due to their artistic fonts and figures
(such as ‘OD’ and ‘E’), extremely small text sizes, and low contrasts and reflective lighting
conditions caused by logo and truck compartment materials.

Training Datasets. To train our universal logo detector and deep metric learning
model, we exploited the existing large logo dataset called QMUL-OpenLogo [14] due to
its rich annotations of logo instances with diverse appearances and background contexts.
The QMUL-OpenLogo dataset consists of 27,083 images from 352 logo classes.

Table 2. Logo distributions of the Annotated Logo Dataset. We use (E), (M), and (D) to represent
logo classes in groups ‘easy’, ‘medium’, and ‘difficult’.

Logo Class & Group Images Logo Class & Group Images Logo Class & Group Images Logo Class & Group Images

Ashley (E) 83 E (D) 248 Lays (M) 64 UPS (D) 236

Atlas (M) 52 FedEx (E) 1128 OD (D) 392 US Foods (M) 163

Budget (M) 47 HamburgSUD (M) 63 Opies (D) 51 Werner (D) 142

CarrollFulmer (M) 30 HeartlandExpress (M) 245 Prime (E) 48 XTRA (E) 489

Celadon (E) 107 heyl (M) 50 RBI (D) 281 YRC (M) 53

Davis (D) 95 JNJ (M) 168 SouthernAG (M) 174 Total 5,020

Dollar General (E) 199 Landstar (E) 362 Sunstate (E) 50

Evaluation Protocols. We adopted a standard object detection evaluation protocols
to evaluate our developed pipeline. Specifically, we adopt two commonly used metrics,
recall, and precision, together with the average precision (AP) that measures the detection
accuracy of a detector. AP computes the average precision for recall values ranging from 0
to 1. The general definition has the formula:

AP =
∫ 1

0
p(r)dr, (3)

where p(r) is the precision value at the recall value r. In practice, the equation is replaced
with a finite sum over several recall values, such as the 11-point interpolated AP used in the
Pascal VOC challenge [44] that is defined as the mean precision at a set of 11 equally spaced
recall values ([0, 0.1, 0.2, . . . , 1]). We follow the new evaluation protocol of the Pascal VOC
challenge where they use all data points, rather than interpolating only 11 equally spaced
points [44] (we used the open-source evaluation tool Object-Detection-Metrics from: https:
//github.com/rafaelpadilla/Object-Detection-Metrics#interpolating-all-points Accessed
25 July 2019). The mean average precision (mAP) is the average of AP over all classes or or

https://github.com/rafaelpadilla/Object-Detection-Metrics#interpolating-all-points
https://github.com/rafaelpadilla/Object-Detection-Metrics#interpolating-all-points


Appl. Sci. 2022, 12, 2075 11 of 15

categories. To decide whether a detection is correct, we calculate IoU (Intersection over
Union) between predicted logos and ground truth logos. If the IoU is greater than a certain
threshold (such as 0.5), the prediction is considered true; otherwise, it is considered false.
The formula of IoU is provided as follows:

IoU =
|B ∩ Bgt|
|B ∪ Bgt|

, (4)

where B and Bgt represents the predicted bounding box and its corresponding ground-truth,
respectively.

Figure 5. Samples of logo classes with different groups (‘easy’, ‘medium’, and ‘difficult’).

4.2. Experimental Results

In this section, we evaluated all three proposed approaches for the following: evalu-
ation of the universal logo detector, evaluation of logo classification, and evaluations on
end-to-end logo detection and recognition. We conducted ablation studies for each step
to verify the effectiveness of our model design. These studies illustrated and detailed the
advantages and disadvantages of model variant of each component, which sheds light on
exploring freight classification using a particular approach.

4.2.1. Universal Logo Detector

We compared one-stage and coarse-to-fine universal logo detectors (ULD) on detection
performance in terms of the recall (Rec), precision (Prec), and the average precision (AP)
(Table 3). With IoU = 0.3, the one-stage ULD detector achieved a recall of 80.0%. The coarse-
to-fine ULD detector achieves a higher recall of 85.7%, which is beneficial to the logo
recognition stage, where the low precision can be further improved. As mentioned, the one-
stage ULD detector directly predicts bounding boxes of logos within truck images, while
it ignores the prior information that logos usually appear on the truck bodies. After we
added this prior information in the coarse-to-fine ULD detector, we obtained consistently
better performance with all different IoU threshold values in terms of the recall (+5%) and
average precision (+5%).

Table 3. Comparisons between variants of the universal logo detectors.

IoU = 0.1 IoU = 0.3 IoU = 0.5

Recall Precision Average Precision Recall Precision Average Precision Recall Precision Average Precision

One-stage ULD 83.7 68.9 74.9 80.0 65.9 68.3 69.9 57.6 56.4
Coarse-to-fine ULD 88.1 65.3 77.9 85.7 63.5 73.5 73.5 54.5 60.8
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4.2.2. Feature Matching-Based Logo Recognizer

We evaluated the logo recognizer with different feature representations. To only
evaluate the performance of the logo recognition component, we assumed that logo regions
are already available to the recognizer, which was obtained by directly cropping out logo
regions using ground truth annotations from the ALD dataset.

The results are reported in Table 4 with the top-k accuracy, which is the fraction of test
images for which the correct label is among the k most probable model predictions. We
chose different values of k for a comprehensive evaluation. The GLD dataset was used as
template samples for feature matching.

Table 4. Evaluations on logo recognition models with different feature representations.

Top-1 Accuracy Top-3 Accuracy Top-5 Accuracy

Deep Metric 90.0 96.3 97.1
Bag of Words 88.3 95.8 97.3

Fused 95.3 97.9 98.3

We were able to achieve the top-1 accuracies of 90.0% and 88.3% with deep metric fea-
tures and bag-of-words features, respectively. We achieved the best performance if we fused
them, which demonstrated that these two features are indeed partially complementary to
each other.

4.2.3. Integrated Logo Model

We evaluated the developed logo models using only the text-based approach, only the
image-based approach and the integrated approach. It is worth noting that certain logo
classes (such as ‘davis’) are ’relatively unclear’ and difficult for the image-based approach
to recognize, as they are likely to be cluttered with scene context. In many cases, it may be
worth considering them as texts rather than as image-based logos. This can be effectively
addressed using the proposed text-based approach. For example, the ‘SouthernAG’ logo
class can be handled by the text-based solution with high recall and precision, although it
achieves poor performance with the image-based approach.

Image-based Logo Detection and Recognition. We evaluated the image-based logo solution
using the mAP metric. We achieved an mAP of 66.2%. Given the relatively small number
of samples for each logo in our datasets, these results are promising. We expect additional
improvements as additional annotated images are added to the dataset.

Text-based Logo Detection and Recognition. The text-based solution has a high precision
on matching texts to company names. In general, it achieved higher precision compared to
the image-based solution. The recall is slightly worse, which can be partly attributed to
the fact that the text detection tends to predict tighter bounding boxes around text regions.
The logo region is usually larger than the text regions, as it usually consists of both text and
figure regions. Because the ALD dataset is annotated as logos, bounding boxes predicted
by our text solution are expected to be smaller than the ground truth annotations, which
can worsen the recall.

Ablation Study on Integration Approaches. To evaluate the two integration approaches we
presented in Section 3, we apportioned the ALD dataset into training and testing set with a
70–30 split. The evaluation result of the two approaches on the testing set of ALD is shown
in Table 5. On the apportioned testing set, approach 1 (text-focused approach) yields better
overall performance in terms of mAP and Acc, while approach 2 gives higher precision.
The results may vary on different datasets. We choose to use approach 1. The subsequent
experiments were conducted on the whole ALD dataset (as opposed to the apportioned
testing set) because approach 1 does not require additional training.
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Table 5. Ablation study of integration approaches.

Text-focused Approach Combined Approach

Recall Precision Average Precision Accuracy Recall Precision Average Precision Accuracy

87.1 69.8 82.2 87.2 82.6 78.7 73.2 86.4

Integrated Logo Model. The end-to-end logo detection and recognition performance were
measured on the ALD dataset. Besides the aforementioned detection metrics (Rec, Prec,
and mAP), we also evaluated the classification accuracy (Acc), where a single predicted
class is obtained by a majority voting of all bounding boxes’ labels detected in one frame.

The experimental result is showed in Table 6. We obtained an mAP of 81.2%, surpass-
ing both the text-based and image-based approach significantly. Given that there were
26 logo classes, these results are promising. As discussed earlier, additional annotation,
in particular for the difficult classes, should further improve the overall accuracy.

Table 6. Evaluations of the text-based and image-based approaches on three logo groups.

Image-Based Text-Based Integrated Approach

Logo Groups Precision Recall Average Precision Precision Recall Average Precision Precision Recall Average Precision

Easy 74.7 88.5 84.6 90.7 95.6 91.7 86.5 98.0 95.1
Medium 60.3 83.1 69.9 93.4 90.6 88.9 72.6 95.1 90.2
Difficult 45.4 50.8 39.5 39.9 24.5 23.4 56.2 59.5 51.4

Overall 60.7 76.1 66.2 71.5 67.3 65.6 72.5 86.4 81.2

As can be found in Table 6, the text-based approach performs well in the easy and
medium categories. It fails to detect logo classes such as ‘OD’, ‘Opies’, and ‘E’, where ‘E’ and
‘OD’ logos are designed with artistic fonts and figures. The ‘Opies’ logo usually appears
on the body of the tank truck, where the compartment is made of reflective materials.
The lighting reflection causes the text-based approach to fail to detect ‘Opies’. These studies
can help traffic agencies customize their specific tasks by choosing a particular solution
considering the characteristics of the data.

Finally, we provide the run-time for each module in the following. On average, the text-
based logo recognizer takes 1.95 s, the coarse-to-fine ULD takes 2.15 s, the feature-matching
based logo recognizer takes 1.61 s, and the final commodity classification through database
lookup takes 0.04 s for each frame. The experiments are performed on an NVIDIA Titan V
GPU. The speed can be boosted using batch processing.

5. Summary and Conclusions

A vision-based freight classification approach has been proposed in the present paper.
Our proposed solution consisting of text-based and image-based branches is able to capture
most existing logos. Both our text-based and image-based solutions are general and can
easily be extended to new logo classes. Our text-based approach using advanced scene-text
solutions produces highly accurate predictions when the logo is mostly text. To extend
it to new logo classes, only the text strings of the logos are needed. Our image-based
approach serves as a complement and deals with logos with little or no text. It first detects
all potential logos, and then performs feature matching with samples of different logo
classes. For potential new logo classes, only around 30 samples need to be collected per class.
Furthermore, we have developed a new freight classification benchmark based on logo data.
To our best knowledge, ours is the first dataset collected to evaluate freight classification
based on logo data. It can be useful in providing traffic engineers and researchers with a
dataset to systematically evaluate their developed freight classification models.

We showed through experiments that our overall accuracy of 80% for 26 chosen logos
is very promising. However, the logos we found from recorded highway videos (from
the state of Florida) are not exhaustive, and the current study is limited by the size of
the collected dataset. To further improve the accuracy and make our approach feasible in
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automatic commodity classification applications, we state that collective effort is needed to
build a comprehensive on-truck logo database, a logo-to-commodity database, as well as
popularization of commodity logos printed on trucks.
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